ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Condiciones De Continuidad De Una Funcion


Enviado por   •  6 de Noviembre de 2012  •  309 Palabras (2 Páginas)  •  746 Visitas

Página 1 de 2

Condiciones De Continuidad De Una Función

Una función continua es aquella cuya regla de correspondencia asigna incrementos pequeños en la variable dependiente a pequeños incrementos de los elementos del dominio de dicha función, es decir, , y usando la expresión , queda donde en este caso, . Ello quiere decir que , y si este último límite existe significa en consecuencia por un teorema de límites (un límite existe si y sólo si los dos límites laterales existen y son iguales) que toda función que cumpla con

es continua en el punto .

Condición no recíproca

La relación no funciona a la inversa: el que una función sea continua no garantiza su derivabilidad. Es posible que los límites laterales sean equivalentes pero las derivadas laterales no; en este caso la función presenta un punto anguloso en dicho punto.

Un ejemplo puede ser la función valor absoluto (también llamada módulo) en el punto . Dicha función se expresa:

Para valores infinitamente cercanos a 0, por ambas ramas, el resultado tiende a 0. Y el resultado en el punto 0 es también 0, por lo tanto es continua. Sin embargo, las derivadas resultan:

Cuando vale 0, las derivadas laterales dan resultados diferentes. Por lo tanto, no existe derivada en el punto, a pesar de que sea continuo.

De manera informal, si el gráfico de la función tiene puntas agudas, se interrumpe o tiene saltos, no es derivable.

Derivada Definidas

Se llama integral definida de la función f(x) 0 entre a y b (a estos dos valores se les denomina límites de integración), al área de la porción de plano limitada por la gráfica de la función, el eje X y las rectas paralelas x = a y x = b

Ejemplo:

5

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com