Metodologia BOX JENKINS ESTACIONAL
Enviado por Nidia Apaza • 8 de Junio de 2021 • Informe • 4.126 Palabras (17 Páginas) • 69 Visitas
APLICACIÓN DE LA METODOLOGÍA
Box – Jenkins (ARIMA)
Modelo Autorregresivo: AR(p)
[pic 1]
Modelo de Promedio Móvil: MA(q)
[pic 2]
Modelo Autorregresivo de Promedio Móvil: ARMA(p,q)
[pic 3]
- IDENTIFICACION DEL MODELO
- Determinar si la serie es estacionaria.
- Identificar la forma del modelo.
II. ESTIMACION DEL MODELO
Estimar los parámetros del modelo.
III. PRUEBA DE ADECUACION
Verificar si el modelo estimado es adecuado.
El valor absoluto de los coeficientes de los modelos debe ser menores que uno:
[pic 4][pic 5] y [pic 6][pic 7]
Los coeficientes deben ser significativos, es decir el valor de p < 0.05.
H: Aleatoriedad de los residuos
H: ρk = 0 H: ρ1 = ρ2 = … = ρk = 0
Intervalo confidencial Estadística de Box-Pierce
± z √(1/n) [pic 8] ~[pic 9]
IV. PRONOSTICO CON EL MODELO
- Pronosticar empleando el modelo adecuado.
- Al haber datos disponibles, utilizar el modelo para revisar los pronósticos.
- Si la serie cambia a través del tiempo, modificar el modelo.
Ejemplo: Cameron Consulting Corporation.
Índice de Transportes (HANKE,393)
222,34 | 223,56 | 241,14 | 251,80 | 258,62 |
222,24 | 223,07 | 241,48 | 251,07 | 259,25 |
221,17 | 225,36 | 246,74 | 248,05 | 261,49 |
218,88 | 227,60 | 248,73 | 249,76 |
|
220,05 | 226,82 | 248,83 | 251,66 |
|
219,61 | 229,69 | 248,78 | 253,41 |
|
216,40 | 229,30 | 249,61 | 252,04 |
|
217,33 | 228,96 | 249,90 | 248,78 |
|
219,69 | 229,99 | 246,45 | 247,76 |
|
219,32 | 233,05 | 247,57 | 249,27 |
|
218,25 | 235,00 | 247,76 | 247,95 |
|
220,30 | 236,17 | 247,81 | 251,41 |
|
222,54 | 238,31 | 250,68 | 254,67 |
|
- Identificación del modelo
La serie de índices de transportes es no estacionaria.
- Tiene tendencia ascendente, pero no presenta varianza significativa por lo que debe ser diferenciada.
[pic 10]
- Las ACF difieren de cero por varios periodos de desfasamiento.
Es decir, presenta coeficientes de autocorrelación significativos (1,2,3,4,5), cayendo a cero rápidamente después del quinto rezago.
[pic 11]
- Se toma la primera diferencia de la serie original por tener tendencia ascendente y varianza no significativa:
[pic 12]
La nueva serie es DIFFS = Yt – Yt-1
La nueva serie tiene 54 observaciones, se perdió 1 observación en razón a la primera diferencia.
[pic 13]
- La función de autocorrelación estimada ACF no muestra patrón alguno, es decir todos los coeficientes de autocorrelación estimados o retardos se encuentran dentro de los límites del correlograma, por tanto, la serie de tiempo se considera como estacionaria.
[pic 14]
- La Función de Autocorrelación parcial estimada PACF no muestra patrón alguno, ya que todos los coeficientes de autocorrelación parcial o retardos se encuentran dentro de los límites del correlograma, confirmando la estacionariedad de la serie:
[pic 15]
- Por lo tanto el modelo propuesto para la serie de índices de transportes es: [pic 16] o (caminata aleatoria (0,1,0) ).
- Estimación del modelo y prueba de adecuación:
- Estimación del modelo:
-----------------------------------------------------------------------------------------
Estimation begins.....
Initial: RSS = 191.307 b = 0.725
Final: RSS = 191.307 ...stopped on criterion 1
-----------------------------------------------------------------------------------------
Summary of Fitted Model for: HANKE442.indice
-----------------------------------------------------------------------------------------
Parameter Estimate Stnd.error T-value P-value
...