SISTEMAS ELEGIDOS
Enviado por lalosantosm • 26 de Marzo de 2015 • 1.000 Palabras (4 Páginas) • 177 Visitas
SISTEMAS ELEGIDOS
% A serial link manipulator comprises a series of links. Each link is described
% by four Denavit-Hartenberg parameters.
%
% Let's define a simple 2 link manipulator. The first link is
>> L1 = Link('d', 0, 'a', 1, 'alpha', pi/2)
L1 =
theta=q, d= 0, a= 1, alpha= 1.571, offset= 0 (R,stdDH)
% The Link object we created has a number of properties
>> L1.a
ans =
1
>> L1.d
ans =
0
% and we determine that it is a revolute joint
>> L1.isrevolute
ans =
1
% For a given joint angle, say q=0.2 rad, we can determine the link transform
% matrix
>> L1.A(0.2)
ans =
0.9801 -0.0000 0.1987 0.9801
0.1987 0.0000 -0.9801 0.1987
0 1.0000 0.0000 0
0 0 0 1.0000
% The second link is
>> L2 = Link('d', 0, 'a', 1, 'alpha', 0)
L2 =
theta=q, d= 0, a= 1, alpha= 0, offset= 0 (R,stdDH)
% Now we need to join these into a serial-link robot manipulator
>> bot = SerialLink([L1 L2], 'name', 'my robot')
bot =
my robot (2 axis, RR, stdDH, fastRNE)
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1| 0| 1| 1.571| 0|
| 2| q2| 0| 1| 0| 0|
+---+-----------+-----------+-----------+-----------+-----------+
grav = 0 base = 1 0 0 0 tool = 1 0 0 0
0 0 1 0 0 0 1 0 0
9.81 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
% The displayed robot object shows a lot of details.
...