ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Actividad Integradora


Enviado por   •  24 de Febrero de 2014  •  2.168 Palabras (9 Páginas)  •  440 Visitas

Página 1 de 9

}

halogenos

Los elementos halógenos son aquellos que ocupan el grupo 17 del Sistema Periódico. Los halógenos F, Cl, Br, I y At, son elementos volátiles, diatónicos y cuyo color se intensifica al aumentar el número atómico. El flúor es un gas de color amarillo pálido, ligeramente más pesado que aire, corrosivo y de olor penetrante e irritante. El cloro es un gas amarillo verdoso de olor penetrante e irritante. El bromo a la temperatura ambiente es un líquido de color rojo oscuro, tres veces más denso que el agua, que se volatiliza con facilidad produciendo un vapor rojizo venenoso. El yodo es un sólido cristalino a temperatura ambiente, de color negro y brillante, que sublima dando un vapor violeta muy denso, venenoso, con un olor picante como el del cloro. El Ástato es un elemento muy inestable que existe sólo en formas radiactivas de vida corta, y que aparece en el proceso de desintegración del 235U. En la Tabla 1 se muestran algunas de las propiedades físicas y atómicas de los elementos de este grupo.

Todos los átomos poseen una configuración que difiere de la de gas noble en un electrón, de forma que los elementos tienden a formar especies negativas, X¯, o a formar enlaces covalentes simples. La química de estos elementos y sus compuestos cambian con el tamaño de los mismos.

Como es esperable, los puntos de fusión y ebullición aumentan al descender en el grupo. Las energías de ionización de los halógenos presentan valores muy altos que van disminuyendo al aumentar el número atómico. Las afinidades electrónicas son elevadas como consecuencia de la tendencia a ganar un electrón y conseguir así la configuración de gas noble.

Los alcoholes :son compuestos orgánicos formados a partir de los

hidrocarburos mediante la sustitución de uno o más grupos

hidroxilo por un número igual de átomos de hidrógeno. El

término se hace también extensivo a diversos productos

sustituidos que tienen carácter neutro y que contienen uno o más

grupos alcoholes.

Usos : Los alcoholes se utilizan como productos químicos intermedios y disolventes en las industrias de textiles, colorantes, productos químicos, detergentes, perfumes, alimentos, bebidas, cosméticos, pinturas y barnices. Algunos compuestos se utilizan también en la desnaturalización del alcohol, en productos de limpieza, aceites y tintas de secado rápido, anticongelantes, agentes esfumínenos y en la flotación de minerales. Los alcoholes se caracterizan por reemplazar un hidrógeno de un hidrocarburo saturado por un hidroxilo (OH). La nomenclatura tradicional antepone la palabra alcohol y da la terminación ilico al prefijo que indican cantidad de átomos de carbonos.

Éteres.

En química orgánica x y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios:

ROH + HOR' → ROR' + H2O

Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.

RO- + R'X → ROR' + X-

Al igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a ser hidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos.

Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas.

El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes.

Los dos pares de electrones no enlazantes del oxígeno pueden interaccionar con otros átomos, actuando de esta forma los éteres como ligandos, formando complejos. Un ejemplo importante es el de los éteres corona, que pueden interaccionar selectivamente con cationes de elementos alcalinos o, en menor medida, alcalinotérreos.

La síntesis de éteres de Williamson es la síntesis de éteres más fiable y versátil. Este método implica un ataque SN2 de un ion alcóxido a un haluro de alquilo primario no impedido o tosialato. Los haluros de alquilo secundarios y los tosialatos se utilizan ocasionalmente en la síntesis de Williamson, pero hay competencia en las reacciones de eliminación, por lo que los rendimientos con frecuencia son bajos.

El alcóxido generalmente se obtiene añadiendo Na, K o NaOH al alcohol.

• Síntesis de éteres mediante aloximercuriación-desmercuriación. En el proceso de aloximercuriación-desmercuriación se añade una molécula de un alcohol a un doble enlace de un alqueno. Se obtiene un éter tal como se muestra a continuación:

l.

Los aldehídos y cetonas:

Los aldehídos y las cetonas son funciones en segundo grado de oxidación. Se consideran derivados de un hidrocarburo por sustitución de dos átomos de hidrógeno en un mismo carbono por uno de oxígeno, dando lugar a un grupo oxo (=O). Si la sustitución tiene lugar en un carbono primario, el compuesto resultante es un aldehído, y se nombra con la terminación -al. Si la sustitución tiene lugar en un carbono secundario, se trata de una cetona, y se nombra con el sufijo -ona.

El grupo carbonilo (>C=O), común a aldehídos y cetonas, confiere polaridad a la moléculas, aunque en menor cuantía que el grupo hidroxilo. Los aldehídos y cetonas pueden, por captación de un átomo de hidrógeno de un carbono contiguo, dar lugar a una reacción intramolecular con formación de un doble enlace y una función hidroxilo, es decir, un enol. Este proceso es fácilmente reversible y se conoce con el nombre de tautomería cetoenólica.

Una de las reacciones químicas más importantes del grupo carbonilo es la adición de una molécula de alcohol para dar hemiacetales (hemicetales si son cetonas). En los monosacáridos se pueden formar hemiacetales o hemicetales internos que dan lugar a la forma cerrada de la molécula. Éstos, a su vez, pueden condensar con otra molécula de alcohol, con pérdida de una molécula de agua, para dar lugar a acetales o

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com