ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

EFECTO CORIOLIS


Enviado por   •  8 de Diciembre de 2014  •  2.829 Palabras (12 Páginas)  •  283 Visitas

Página 1 de 12

Efecto coriolis

Es el efecto que se observa en un sistema de referencia en rotación cuando un cuerpo se encuentra en movimiento respecto de dicho sistema de referencia. Este efecto consiste en la existencia de una aceleración relativa del cuerpo en dicho sistema en rotación. Esta aceleración es siempre perpendicular al eje de rotación del sistema y a la velocidad del cuerpo.

El efecto Coriolis hace que un objeto que se mueve sobre el radio de un disco en rotación tienda a acelerarse con respecto a ese disco según si el movimiento es hacia el eje de giro o alejándose de éste. Por el mismo principio, en el caso de una esfera en rotación, el movimiento de un objeto sobre los meridianos también presenta este efecto, ya que dicho movimiento reduce o incrementa la distancia respecto al eje de giro de la esfera.

La fuerza de Coriolis es una fuerza ficticia que aparece cuando un cuerpo está en movimiento con respecto a un sistema en rotación y se describe su movimiento en ese referencial. La fuerza de Coriolis es diferente de la fuerza centrífuga. La fuerza de Coriolis siempre es perpendicular a la dirección del eje de rotación del sistema y a la dirección del movimiento del cuerpo vista desde el sistema en rotación. La fuerza de Coriolis tiene dos componentes:

una componente tangencial, debido a la componente radial del movimiento del cuerpo, y

una componente radial, debido a la componente tangencial del movimiento del cuerpo.

La componente del movimiento del cuerpo paralela al eje de rotación no engendra fuerza de Coriolis. El valor de la fuerza de Coriolis es:

Debido a que el objeto sufre una aceleración desde el punto de vista del observador en rotación, es como si para éste existiera una fuerza sobre el objeto que lo acelera. A esta fuerza se la llama fuerza de Coriolis, y no es una fuerza real en el sentido de que no hay nada que la produzca. Se trata pues de unafuerza inercial o ficticia, que se introduce para explicar, desde el punto de vista del sistema en rotación, la aceleración del cuerpo, cuyo origen está en realidad, en el hecho de que el sistema de observación está rotando.

Un ejemplo canónico de efecto Coriolis es el experimento imaginario en el que disparamos un proyectil desde el Ecuador en dirección norte. El cañón está girando con la tierra hacia el este y, por tanto, imprime al proyectil esa velocidad (además de la velocidad hacia adelante al momento de la impulsión). Al viajar el proyectil hacia el norte, sobrevuela puntos de la tierra cuya velocidad líneal hacia el este va disminuyendo con la latitud creciente. La inercia del proyectil hacia el este hace que su velocidad angular aumente y que, por tanto, adelante a los puntos que sobrevuela. Si el vuelo es suficientemente, el proyectil caerá en un meridiano situado al este de aquél desde el cual se disparó, a pesar de que la dirección del disparo fue exactamente hacia el norte. Finalmente, el efecto Coriolis, al actuar sobre masas de aire (o agua) en latitudes intermedias, induce un giro al desviar hacia el este o hacia el oeste las partes de esa masa que ganen o pierdan latitud o altitud en su movimiento.

Para demostrar la expresión analítica expresada en la introducción, pueden usarse dos aproximaciones diferentes: por conservación del momento angular o por derivación en base móvil.

Demostración por conservación del momento angular

En el caso de un sistema en rotación, el observador ve que todos los objetos que no están sujetos se alejan de manera radial como si actuase sobre ellos una fuerza proporcional a sus masas y a la distancia a una cierta recta (el eje de rotación). Esa es la fuerza centrífuga que hay que compensar con lafuerza centrípeta para sujetar los objetos.

Si los objetos no están inmóviles con respecto al observador del sistema en rotación, otra fuerza ficticia aparece: la fuerza de Coriolis.

Un objeto que se desplaza paralelamente al eje de rotación, visto de un sistema fijo, gira con el sistema en rotación a la misma velocidad angular y con radio constante. La única fuerza que actúa sobre el objeto es la fuerza centrípeta. El observador del sistema en rotación sólo nota la fuerza centrífuga contra la cual hay que oponerse para que se quede a la misma distancia del eje.

Supóngase que un observador en el sistema en rotación mantiene una masa a una distancia del eje de rotación mediante un hilo de masa despreciable. El observador tira del hilo y modifica ligeramente el radio de rotación de la masa de . Eso le ha tomado un tiempo . Como el momento dinámico es nulo, el momento angular de la masa se conserva. Si es la velocidad de la masa, la conservación del momento angular expresa:

El signo menos indica que cuando el radio aumenta la velocidad tangencial disminuye.

Como el objeto no está sujeto al sistema en rotación, el observador en ese sistema ve la masa tomar una velocidad lateral . Eso se interpreta como la aplicación de una fuerza lateral (de Coriolis). Si el cambio de velocidad tomó segundos, la aceleración de Coriolis será (en valor absoluto):

,

donde es la velocidad radial. Esa aceleración corresponde a una fuerza (de Coriolis) de:

Como el objeto no está sujeto al sistema en rotación, el observador en ese sistema ve la masa tomar una velocidad lateral . Eso se interpreta como la aplicación de una fuerza lateral (de Coriolis). Si el cambio de velocidad tomó segundos, la aceleración de Coriolis será (en valor absoluto):

,

donde es la velocidad radial. Esa aceleración corresponde a una fuerza (de Coriolis) de:

Como el objeto no está sujeto al sistema en rotación, el observador en ese sistema ve la masa tomar una velocidad lateral . Eso se interpreta como la aplicación de una fuerza lateral (de Coriolis). Si el cambio de velocidad tomó segundos, la aceleración de Coriolis será (en valor absoluto):

,

donde es la velocidad radial. Esa aceleración corresponde a una fuerza (de Coriolis) de:

Para esta demostración se utilizará el subíndice abs para indicar magnitudes vistas desde el sistema de referencia inercial, es decir, uno donde el espacio sea homogéneo e isótropo y donde el tiempo sea constante. El subíndice rel (relativa) se refiere a magnitudes vistas desde una referencia no galileana o no inercial. El subíndice ar (arrastre) hace referencia al movimiento de la base móvil respecto a la base fija.

También es necesario conocer cómo se deriva en una base móvil:

Una aceleración es un cambio en la magnitud o en la orientación de la velocidad respecto del tiempo. Para esa demostración se considera un movimiento que no varía

...

Descargar como (para miembros actualizados) txt (15 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com