ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ELIPSE


Enviado por   •  8 de Abril de 2015  •  Tesina  •  3.809 Palabras (16 Páginas)  •  230 Visitas

Página 1 de 16

Historia[editar]

Forma elíptica trazada en la antigüedad sobre un muro de Tebas (Egipto).

La elipse, como curva geométrica, fue estudiada por Menecmo, investigada por Euclides, y su nombre se atribuye a Apolonio de Pérgamo. El foco y la directriz de la sección cónica de una elipse fueron estudiadas por Pappus. En 1602, Kepler creía que la órbita de Marte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahora lleva su nombre trazaba una órbita elíptica alrededor del Sol.2

Elementos de una elipse[editar]

La elipse y algunas de sus propiedades geométricas.

La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:

El semieje mayor (el segmento C-a de la figura), y

el semieje menor (el segmento C-b de la figura).

Miden la mitad del eje mayor y menor respectivamente.

Puntos de una elipse[editar]

Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor (d(P,F1)+d(P,F2)=2a).

Por comodidad denotaremos por PQ la distancia entre dos puntos P y Q.

Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:

P F_1 + P F_2 = 2a \,

donde a \, es la medida del semieje mayor de la elipse.

Ejes de una elipse[editar]

El eje mayor, 2a, es la mayor distancia entre dos puntos opuestos de la elipse. El resultado de la suma de las distancias de cualquier punto a los focos es constante y equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos opuestos de la elipse. Los ejes de la elipse son perpendiculares entre sí.

Excentricidad de una elipse[editar]

La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (longitud del segmento que parte del centro de la elipse y acaba en uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.

Elipse1.0.jpg

\varepsilon=\frac{c}{a} , con (0\le\varepsilon\le1)

Dado que c = \sqrt{a^2-b^2} , también vale la relación:

\varepsilon=\sqrt{\cfrac{a^2-b^2}{a^2}}

=\sqrt{1- \frac{b^2}{a^2} }

o el sistema:

\begin{cases}

\varepsilon=\cfrac{c}{a}\\

c = \sqrt{a^2-b^2} \end{cases}

La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.3 La designación tradicional de la excentricidad es la letra griega ε llamada épsilon.

(No se debe usar la letra e para designarla, porque se reserva para la base de los logaritmos naturales o neperianos. Véase: número e).

Excentricidad angular de una elipse[editar]

La excentricidad angular \alpha es el ángulo para el cual el valor de la función trigonométrica seno concuerda con la excentricidad \varepsilon, esto es:

\alpha=\sin^{-1}(\varepsilon)=\cos^{-1}\left(\frac{b}{a}\right)=2\tan^{-1}\left(\sqrt{\frac{a-b}{a+b}}\right);\,\!

Constante de la elipse[editar]

Animación elipse.gif

En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse.

Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor:

PF1 + PF2 = 2a

En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto de puntos, cómo se cumple la definición.

Directrices de la elipse[editar]

La recta dD es una de las 2 directrices de la elipse.

Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz que resulta en la igualdad:

\varepsilon=\frac{\overline{\text{PF}}}{\overline{\text{PD}}}

La relación entre estas dos distancias es la excentricidad \varepsilon de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.

Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente entre sus distancias a un punto fijo –que se denomina foco– y a una recta dada –llamada directriz– permanece constante y es igual a la excentricidad de la misma.

Además de la bien conocida relación \varepsilon=\frac{f}{a}, también es cierto que \varepsilon=\frac{a}{d} , también es útil la fórmula d=\frac{a}{\varepsilon} .

Aunque en la figura solo se dibujó la directriz del foco derecho, existe otra directriz para el foco izquierdo cuya distancia del centro O es -d, la cual además es paralela a la directriz anterior. Ver más adelante cómo se dibuja la directriz.

Elementos gráficos de la elipse[editar]

Nomenclatura[editar]

ElipseDimensionesDefinicion b.svg

La descripción corresponde a las imágenes de la derecha.

Los diámetros principales o ejes principales son los diámetros máximo y mínimo de la elipse, perpendiculares entre sí y que pasan por el centro. Tradicionalmente son nombrados A-B el mayor y D-C el menor, aunque también se utilizan otras nomenclaturas, como A-A' el mayor y B-B' el menor.

El centro de la elipse se suele nombrar O (origen). En la circunferencia los focos coinciden con el centro.

Los focos se suelen nombrar con la letra F acompañada de algún medio de diferenciarlos, F1 - F2, o F' - F" .

El diámetro mayor de la elipse se suele designar 2a, siendo a el semieje mayor. El semieje menor se denomina b y el diámetro menor 2b. La distancia de cada foco al centro se denomina c.

Los segmentos que van de cada foco

...

Descargar como (para miembros actualizados) txt (25 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com