ESTADISTICA INFERENCIAL
Enviado por luism09121990 • 25 de Septiembre de 2013 • 4.791 Palabras (20 Páginas) • 6.712 Visitas
PRUEBA DE HIPÓTESIS CON DISTRIBUCIÓN DE MEDIAS MUÉSTRALES
Z= (x ̅-u)/(σ/ √n)
1.-Muchos años de experiencia en un examen de ingreso a la universidad en inglés, arroja una calificación promedio de 64, con una desviación estándar de 8. Todos los estudiantes de cierta cuidad, en la cual existen 64, ha obtenido una calificación promedio de 68. ¿Puede tenerse de que la certeza de que los estudiantes de esta ciudad son superiores en inglés?
1) 2) 3)
4) Z= (x ̅-u)/(σ/ √n)
5)
6) Z = 4 Se ubica en la zona de rechazo (4 > 1,64) por lo tanto puede tenerse la certeza, con un nivel de significación del 5%, que los estudiantes de esta ciudad son superiores en inglés.
2.-Docimar la hipótesis, de que la distancia media requerida para poder detener un automóvil que va a 20km es de 25 metros. Con base en una muestra de 100 conductores se obtiene que la distancia es x ̅ = 27.3 metros, con una desviación estándar de s= 6,10 metro. Utilizar un nivel de significación del 5%.
1) 2) 3)
4) Z= (x ̅-u)/(σ/ √n)
5)
6) La distancia media requerida es diferente a 25 metros, al nivel del 5%.
3.- Dado x ̅ = 86 s=16 y n =100, docimar la hipótesis u = 80 frente a la alternativa bilateral u≠ 80 , al nivel de significación del 5%
1) 2) 3)
4) Z= (x ̅-u)/(σ/ √n)
Se rechaza la hipótesis de que y se acepta la alternativa de que .
4.-Cuatrocientos estudiantes, elegidos aleatoriamente, se someten a un “test” de rendimiento, obteniéndose los siguientes resultados x ̅ = 76 y s= 16 , con un base en esta información , docimar la hipótesis u=74 frente a la alternativa u≠ 74, al nivel de significación del 1%.
1) 2) 3)
4) Z= (x ̅-u)/(σ/ √n)
5)
6) Se ubica en la zona de aceptación; aceptamos que , al nivel del 1%
5.-Dado x ̅ = 23.5 ; σ = 3.2 y n=25, docimar la hipótesis u= 22 frente a la alternativa u≠22 al nivel de significación del 5%.
1) 2) 3)
4)
5)
6) Rechazamos la hipótesis de que y aceptamos de que , al nivel del 5%.
DISTRIBUCIÓN DE DIFERENCIAS ENTRE DOS MEDIAS MUESTRALES
Z=((x ̅-y ̅ )-(ux-uy))/(√(s^2/n1)+√(s^2/n2))
1.-Se comparan dos procesos de Fabricación. Una muestra de 100 artículos del primer proceso tienen un media de 107 y una desviación estándar e 17. En el segundo proceso, una muestra de tamaño 90 tiene una media de 103 y desviaciones estándar de 16. ¿Existe alguna diferencia significativa entre las medias de ambos procesos?
A B
n1-n2 100 90
x-y 107 103
s1-s2 17 16
1) 2) 3)
4) Z=((x ̅-y ̅ )-(ux-uy))/(√(s^2/n1)+√(s^2/n2))
Al nivel del 5%, no existe diferencia significativa entre las medias de los dos productos.
2.-Se requiere comparar el nivel salarial de los empleados de dos empresas. La primera reporta que en una muestra aleatoria de 46 empleados , su salario promedio fue de $818000 con una desviación estándar de $32000 .Se elige una muestra aleatoria de 60 empledos de l segunda empresa obteniéndose un salario promedio de $842000 y desviación estándar de %41000. ¿Con los anteriores resultados podemos concluir que los salarios en la primera empresa son inferiores? (Nivel del 1%)
DATOS:
A B
n1-n2 46 60
x-y 818000 842000
s1-s2 32000 41000
1) 2) 3)
4) Z=((x ̅-y ̅ )-(ux-uy))/(√(s^2/n1)+√(s^2/n2))
5)
6) Sí existe una diferencia significativa, que permite concluir que los salarios en B son superiores a los de A, al nivel del 1%
3.- En una universidad se dice que el rendimiento de la facultad A es inferior al de la facultad P. Se le ha preguntado al jefe de notas sobre los respectivos promedios y desviaciones típicas, tan solo recuerda estos últimos 0,7 y 0.86 respectivamente. Frente a lo anterior se plantea la realización de dos muestras y de tamaño de 20 y 28 en cada facultad. Obteniendo promedios de 3.32 y 3.50 ¿A nivel del 5% se podrá aceptar lo que generalmente se dice?
1) 2) 3)
4)
5)
Al nivel del 5%, no se debe aceptar lo que generalmente se dice, que el rendimiento de A es inferior a B. Unilateral izquierdo.
* Se trabaja con dado que se dan las desviaciones típicas poblacionales.
4.-Una cadena de almacenes ofrece dos planes de cuentas de cargo, disponibles para sus clientes con cuenta corriente de crédito. El departamento de crédito desea información hacerla de el comportamiento década plan , a fin de estudiar sus diferencias. Se consideró que una de las variables a estudiar debía ser el saldo mensual promedio. Se tomaron dos muestras de tamaño de 36 y 40 cuentas, de cada plan, con los siguientes resultados: promedio de $95 y $110 mil pese respectivamente, siendo sus desviaciones estará de $15 y $18 mil pesos. ¿Al nivel del 5% se podrá afirmar que existe una diferencia en el comportamiento de estos planes?.
1) 2) 3)
4)
5)
Al nivel del 5%, se puede afirmar que existen diferencias en el comportamiento de estos planes. Prueba bilateral.
* Se trabaja con las desviaciones típicas muéstrales, dado que
DISTRIBUCION PROPORCIONALES
1.- La fracción de artículos defectuosos de cierto proceso supervisado es 0.14. Un proveedor de materia prima ofrece un nuevo producto asegurado que reduce la fracción de defectuosos. Con las muestras que el proveedor suministra, se hace un ensayo en la producción con el resultado de 48 defectuosos de un total de 360. Contratar si el proveedor tiene o no la razón en la calidad de la nueva materia prima, con un 5% de significación.
...