Ejercicios de Matemáticas
Enviado por carolina8amueses • 7 de Agosto de 2013 • Examen • 1.903 Palabras (8 Páginas) • 280 Visitas
FASE 1
A . resuelve los siguientes límites:
〖lim〗_(x →-2) (x^2-x-2)/(x^2-5x+6)
lim (x^2-x-2)/(x^2-5x+6) - lim (( x-2)(x+1))/((x-2)(x-3))
x →2
= lim (x+1)/(x-3)
x →2
= lim x+1
x →2
lim x-3
x →2
= 3/(-1)
= -3
2. 〖lim〗_(x →0)
lim √(9+x -3)/x = lim √(9+x -3)/x √(9+x+3)/√(9+x+3)
x →0 x →0
= lim ((√(9+x)〖2-〗_9 ))/x(√(9+x)+3)
= lim
x →0 (9+x-9)/(x(√(9+x)+3))
= lim
x →0 1/√(9+x +3)
= 1/√(9+0+3 ) = 1/6
3. 〖lim〗_(x →-2) (3-√(x^2+5))/(3x+6)
(3-√(x^2+5))/(3x+6) = lim
x →-2 x →-2 (3-√(x^2+5))/(3x+6) x (3+√(x^2+5))/(3+√(x^2+5))
= lim (9-(x^2+5))/(9x+3x√(x^2+5 )) +18+6√(x^2+5))
x →-2
= lim
x →-2 (4-x^2)/(9 (x+2)+3√(x^2+5(x+2)))
= lim
x →-2 ((2-x)(2+x))/((x+2)(9+3√(x^2+5))
= lim
x →-2 (2-x)/(9+3√(x^2+5))
= lim
(x →-2 2-x)/█(lim 9+3√(x^2+5)@x →-2) = (2-(-2))/(9+3√(4+5))
=4/18 = 2/9
4. 〖lim〗┬h〖→2b〗 ((b+h)2_(-b^2 ))/h→
((b+h)2_(-b^2 ))/h = ((b+2b)2_(-b^2 ))/2b
= ((3〖b)〗^2 )- b^2)/2b = (9b^2-b^2)/2b = 4b
FASE 3
X3/(1-2X^2 )
8. 〖lim〗_(x →00) {X^3/〖4X〗^3 }
Simplificando se tiene:
〖lim〗_(x →00) {1/4} x^3⁄(1-〖2x〗^3 ) = 〖lim〗_(x →00) {1/4} (x^2⁄x^3 )/((1-2x^3 )/x^3 )
...