ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadística Y Su Relación Con La Media, Moda Y Mediana Aritmetica


Enviado por   •  7 de Julio de 2013  •  2.072 Palabras (9 Páginas)  •  1.251 Visitas

Página 1 de 9

Media aritmética

La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total de datos. Es el símbolo de la media aritmética.

También llamada media o promedio. La media aritmética es el promedio de un conjunto de números, a1, a2, a3,. . ., an, obtenida sumando todos los números y dividiéndola entre n.

Esta es una manera de encontrar un valor representativo de un conjunto de números. El resultado es que sólo necesitamos trabajar con un número (la media aritmética) en lugar de un gran conjunto de datos, cuando se considera apropiado.

(Ver anexo 1...)

Mediana aritmética

La mediana estadística es el número central de un grupo de números ordenados por tamaño. Si la cantidad de términos es par, la mediana es el promedio de los dos números centrales: es aquel valor que ocupa el lugar central, de modo que la mitad de los casos queda por debajo de ese valor y la otra mitad por encima. si el conjunto de valores es un número par, entonces se calcula la media aritmética a los dos valores del centro.

Para averiguar la mediana de un grupo de números:

Ordena los números según su tamaño

Si la cantidad de términos es impar, la mediana es el valor central.

Si la cantidad de términos es par, suma los dos términos del medio y divide por 2.

El valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.

La mediana se representa por Me.

La mediana se puede hallar sólo para variables cuantitativas.

Cálculo de la mediana

1 Ordenamos los datos de menor a mayor.

2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.

(Ver anexo 2…)

Moda aritmética

En estadística, la moda es el valor con una mayor frecuencia en una distribución de datos.

Hablaremos de una distribución bimodal de los datos adquiridos en una columna cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Una distribución trimodal de los datos es en la que encontramos tres modas. Si todas las variables tienen la misma frecuencia diremos que no hay moda.

El intervalo modal es el de mayor frecuencia absoluta. Cuando tratamos con datos agrupados antes de definir la moda, se ha de definir el intervalo modal.

La moda, cuando los datos están agrupados, es un punto que divide al intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo.

(Ver anexo 3…)

Desviación estándar

La desviación estándar o desviación típica (denotada con el símbolo σ o s, dependiendo de la procedencia del conjunto de datos) es una medida de dispersión para variables de razón (variables cuantitativas o cantidades racionales) y de intervalo Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que presentan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad al momento de describirlos e interpretarlos para la toma de decisiones.

Interpretación y aplicación

La desviación estándar es una medida del grado de dispersión de los datos con respecto al valor promedio. Dicho de otra manera, la desviación estándar es simplemente el "promedio" o variación esperada con respecto a la media aritmética.

Por ejemplo, las tres muestras (0, 0, 14, 14), (0, 6, 8, 14) y (6, 6, 8, 8) cada una tiene una media de 7. Sus desviaciones estándar muéstrales son 8.08, 5.77 y 1.15 respectivamente. La tercera muestra tiene una desviación mucho menor que las otras dos porque sus valores están más cerca de 7.

La desviación estándar puede ser interpretada como una medida de incertidumbre. La desviación estándar de un grupo repetido de medidas nos da la precisión de éstas. Cuando se va a determinar si un grupo de medidas está de acuerdo con el modelo teórico, la desviación estándar de esas medidas es de vital importancia: si la media de las medidas está demasiado alejada de la predicción (con la distancia medida en desviaciones estándar), entonces consideramos que las medidas contradicen la teoría. Esto es coherente, ya que las mediciones caen fuera del rango de valores en el cual sería razonable esperar que ocurrieran si el modelo teórico fuera correcto. La desviación estándar es uno de tres parámetros de ubicación central; muestra la agrupación de los datos alrededor de un valor central (la media o promedio).

Correlación

En probabilidad y estadística, la correlación indica la fuerza y la dirección de una relación lineal y proporcionalidad entre dos variables estadísticas. Se considera que dos variables cuantitativas están correlacionadas cuando los valores de una de ellas varían sistemáticamente con respecto a los valores homónimos de la otra: si tenemos dos variables (A y B) existe correlación si al aumentar los valores de A lo hacen también los de B y viceversa. La correlación entre dos variables no implica, por sí misma, ninguna relación de causalidad.

Fuerza, sentido y forma de la correlación

La relación entre dos variables cuantitativas queda representada mediante la línea de mejor ajuste, trazada a partir de la nube de puntos. Los principales componentes elementales de una línea de ajuste y, por lo tanto, de una correlación, son la fuerza, el sentido y la forma:

La fuerza extrema según el caso, mide el grado en que la línea representa a la nube de puntos: si la nube es estrecha y alargada, se representa por una línea recta, lo que indica que la relación es fuerte; si la nube de puntos tiene una tendencia elíptica o circular, la relación es débil.

El sentido mide la variación de los valores de B con respecto a A: si al crecer los valores de A lo hacen los de B, la relación es positiva; si al crecer los valores de A disminuyen los de B, la relación es negativa.

La forma

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com