Estructuracion De Modelos De Sistemas
Enviado por luis171991 • 15 de Abril de 2013 • 2.623 Palabras (11 Páginas) • 492 Visitas
4.3 Estructuración de modelos de sistemas
En el mundo actual, tanto en el área de los negocios, como en la industria y el gobierno, los proyectos en gran escala y de gran complejidad son la regla y no la excepción. Estos proyectos complejos requieren estudios previos a su construcción o modificación, denominados estudios pilotos. Tales estudios pilotos se realizan utilizando la técnica llamada Modelización, es decir, construcción de modelos donde se realiza el estudio con el fin de obtener conclusiones aplicables al sistema real.
Construido el modelo, el proceso de ensayar en él una alternativa se llama simular. El conjunto de alternativas que se definen para su ensayo constituye la estrategia de la simulación. Los objetivos del proyecto definen cuál es el sistema y cuál el medio ambiente que lo rodea.
La simulación de sistemas implica la construcción de modelos. El objetivo es averiguar que pasaría en el sistema si acontecieran determinadas hipótesis. Desde muy antiguo la humanidad ha intentado adivinar el futuro. Ha querido conocer qué va a pasar cuando suceda un determinado hecho histórico. La simulación ofrece, sobre bases ciertas, esa predicción del futuro, condicionada a supuestos previos. Para ello se construyen los modelos, normalmente una simplificación de la realidad. Surgen de un análisis de todas las variables intervinientes en el sistema y de las relaciones que se descubren existen entre ellas.
A medida que avanza el estudio del sistema se incrementa el entendimiento que el analista tiene del modelo y ayuda a crear modelos más cercanos a la realidad. En el modelo se estudian los hechos salientes del sistema o proyecto. Se hace una abstracción de la realidad, representándose el sistema/proyecto, en un modelo.
El modelo que se construye debe tener en cuenta todos los detalles que interesan en el estudio para que realmente represente al sistema real (Modelo válido). Por razones de simplicidad deben eliminarse aquellos detalles que no interesan y que lo complicarían innecesariamente. Se requiere pues, que el modelo sea una fiel representación del sistema real. No obstante, el modelo no tiene porqué ser una réplica de aquél. Consiste en una descripción del sistema, junto con un conjunto de reglas que lo gobiernan.
La descripción del sistema puede ser abstracta, física o simplemente verbal. Las reglas definen el aspecto dinámico del modelo. Se utilizan para estudiar el comportamiento del sistema real. Como ejemplo de modelo físico se pueden citar los túneles de viento donde se ensayan los aviones, los simuladores de vuelo, los canales de experiencia donde se ensayan los barcos, etc.
Como ejemplo de modelo abstracto, se pueden citar los modelos econométricos donde, entre otras cosas, se pueden ensayar las consecuencias de medidas económicas antes de aplicarlas.
Dado un sistema, son muchas las representaciones que se pueden hacer de él. Depende de las facetas del sistema que interesan en el estudio, de la herramienta que se utiliza en el mismo e incluso de la modalidad personal del que lo construye. En los modelos deben estar identificadas perfectamente las entidades intervinientes y sus atributos. Las mismas pueden ser permanentes (Ej.: empleados atendiendo) o transitorias (Ej.: clientes). Las acciones provocan cambios de estado, es decir, se modifican los atributos de las entidades; se producen los eventos.
C. WEST CHURCHMAN en su obra “The Systems Approach” nos resalta que “Todo diseño de sistema se orienta hacia el futuro, especialmente hacia un futuro cercano. Los diseños y modelos que habitualmente se consideran versan sobre la etapa siguiente a la actual.”
Por otro lado existe un Axioma: “el futuro es menos cierto que el presente”
También nos hace una aguda observación: “el pasado es tan difícil de conocer con certeza como el futuro, cosa digna de reflexión en cuanto nos fundamos en datos del pretérito para averiguar el porvenir”
El Planeamiento estático comprende una sola etapa. El planeamiento dinámico contempla múltiples etapas.
Para predecir el futuro se postula lo siguiente:
• La actividad de estimar lo sucedido en lo pasado es separable de la actividad a estimar de lo que ha de suceder en lo futuro. Es decir, el análisis del futuro es separable del análisis del pasado.
• Cualquier estimación específica de lo ocurrido en el pasado puede ser evaluada conforme a una escala que va desde valores negativos pasando por cero a valores positivos (hay hechos que inciden negativamente, otros que no inciden y otros que inciden positivamente para que ocurra algo).
• El conocimiento del futuro es posible
John W. SUTHERLAND señala que prácticamente todos los fenómenos del mundo real pueden ser modelizados según cuatro direcciones de análisis:
• El nivel de las variables de estado, donde se trata de investigar los principales aspectos estructurales o cualitativos del sistema
• El nivel paramétrico, que implica la asignación de valores numéricos específicos a las variables de estado
• El nivel de las relaciones, que implica establecer la naturaleza de las relaciones entre las variables de estado, y
• El nivel de los coeficientes en que se asignan valores numéricos específicos a los conjuntos de las variables de estado.
El que va a tomar la decisión percibe en forma real, o aparente, una identidad efectiva entre el estado real del sistema y el postulado. Al percibirla toma la decisión, de lo contrario comienza el análisis para lograr esa identidad. A posteriori se hace un análisis de informaciones comparando lo previsto con lo real para el instante t y el instante t-1. Mientras perciba una diferencia entre lo postulado y lo real continuará el proceso de análisis. Cuando logre la identidad procederá a tomar su decisión. Tenemos un planteo teórico general que nos permite inferir el futuro en base al conocimiento del presente y la influencia del pasado en un modelo válido (identificación entre lo real y lo postulado).
En las decisiones existen sistemas donde prima:
• El determinismo. La base de datos y las relaciones causales son altamente específicas y precisas respecto del fenómeno contemplado. Sólo se espera que haya uno y sólo un acontecimiento probable, que repetirá situaciones anteriores. Se tiene una identidad efectiva entre los estados a priori y los que realmente se producen. Los instrumentos de análisis correspondientes son: modelos de análisis de estados de los sistemas finitos; programación lineal y modelos de máx. Y mín.; análisis de la regresión, de la correlación, análisis de series temporales y espectrales, con
...