ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Leyes De Los Exponentes


Enviado por   •  6 de Noviembre de 2012  •  469 Palabras (2 Páginas)  •  634 Visitas

Página 1 de 2

José Ignacio Espinosa

05/11/2012

Leyes de los exponentes

Aquí están las leyes (las explicaciones están después):

Ley Ejemplo

x1 = x 61 = 6

x0 = 1 70 = 1

x-1 = 1/x 4-1 = 1/4

xmxn = xm+n x2x3 = x2+3 = x5

xm/xn = xm-n x4/x2 = x4-2 = x2

(xm)n = xmn (x2)3 = x2×3 = x6

(xy)n = xnyn (xy)3 = x3y3

(x/y)n = xn/yn (x/y)2 = x2 / y2

x-n = 1/xn x-3 = 1/x3

Explicaciones de las leyes

Las tres primeras leyes (x1 = x, x0 = 1 y x-1 = 1/x) son sólo parte de la sucesión natural de exponentes. Mira este ejemplo:

Ejemplo: potencias de 5

... etc...

52 1 × 5 × 5 25

51 1 × 5 5

50 1 1

5-1 1 ÷ 5 0,2

5-2 1 ÷ 5 ÷ 5 0,04

... etc...

verás que los exponentes positivos, cero y negativos son en realidad parte de un mismo patrón, es decir 5 veces más grande (o pequeño) cuando el exponente crece (o disminuye).

La ley que dice que xmxn = xm+n

En xmxn, ¿cuántas veces multiplicas "x"? Respuesta: primero "m" veces, despuésotras "n" veces, en total "m+n" veces.

Ejemplo: x2x3 = (xx) × (xxx) = xxxxx = x5

Así que x2x3 = x(2+3) = x5

La ley que dice que xm/xn = xm-n

Como en el ejemplo anterior, ¿cuántas veces multiplicas "x"? Respuesta: "m" veces, después reduce eso "n" veces (porque estás dividiendo), en total "m-n" veces.

Ejemplo: x4-2 = x4/x2 = (xxxx) / (xx) = xx = x2

(Recuerda que x/x = 1, así que cada vez que hay una x "sobre la línea" y una "bajo la línea" puedes cancelarlas.)

Esta ley también te muestra por qué x0=1 :

Ejemplo: x2/x2 = x2-2 = x0 =1

La ley que dice que (xm)n = xmn

Primero multiplicas x "m" veces. Después tienes que hacer eso "n" veces, en total m×n veces.

Ejemplo: (x3)4 = (xxx)4 = (xxx)(xxx)(xxx)(xxx) = xxxxxxxxxxxx = x12

Así que (x3)4 = x3×4 = x12

La ley que dice que (xy)n = xnyn

Para ver cómo funciona, sólo piensa en ordenar las "x"s y las "y"s como en este ejemplo:

Ejemplo: (xy)3 = (xy)(xy)(xy) = xyxyxy = xxxyyy = (xxx)(yyy) = x3y3

La ley que dice que (x/y)n = xn/yn

Parecido al ejemplo anterior, sólo ordena las "x"s y las "y"s

Ejemplo: (x/y)3 = (x/y)(x/y)(x/y) = (xxx)/(yyy) = x3/y3

La ley que dice que

Para entenderlo, sólo recuerda de las fracciones que n/m = n × (1/m):

Ejemplo:

Y eso es todo

Si te cuesta recordar todas las leyes, acuérdate de esto:

siempre puedes calcular todo si entiendes las tres ideas de la parte de arriba de esta página.

Ah, una cosa más...

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com