Leyes De Los Exponentes
Enviado por UCHIHA93 • 12 de Septiembre de 2012 • 1.266 Palabras (6 Páginas) • 668 Visitas
Leyes de los exponentes
Aquí están las leyes (las explicaciones están después):
Ley Ejemplo
x1 = x 61 = 6
x0 = 1 70 = 1
x-1 = 1/x 4-1 = 1/4
xmxn = xm+n x2x3 = x2+3 = x5
xm/xn = xm-n x4/x2 = x4-2 = x2
(xm)n = xmn (x2)3 = x2×3 = x6
(xy)n = xnyn (xy)3 = x3y3
(x/y)n = xn/yn (x/y)2 = x2 / y2
x-n = 1/xn x-3 = 1/x3
Explicaciones de las leyes
Las tres primeras leyes (x1 = x, x0 = 1 y x-1 = 1/x) son sólo parte de la sucesión natural de exponentes. Mira este ejemplo:
Ejemplo: potencias de 5
... etc...
52 1 × 5 × 5 25
51 1 × 5 5
50 1 1
5-1 1 ÷ 5 0,2
5-2 1 ÷ 5 ÷ 5 0,04
... etc...
verás que los exponentes positivos, cero y negativos son en realidad parte de un mismo patrón, es decir 5 veces más grande (o pequeño) cuando el exponente crece (o disminuye).
La ley que dice que xmxn = xm+n
En xmxn, ¿cuántas veces multiplicas "x"? Respuesta: primero "m" veces, despuésotras "n" veces, en total "m+n" veces.
Ejemplo: x2x3 = (xx) × (xxx) = xxxxx = x5
Así que x2x3 = x(2+3) = x5
La ley que dice que xm/xn = xm-n
Como en el ejemplo anterior, ¿cuántas veces multiplicas "x"? Respuesta: "m" veces, después reduce eso "n" veces (porque estás dividiendo), en total "m-n" veces.
Ejemplo: x4-2 = x4/x2 = (xxxx) / (xx) = xx = x2
(Recuerda que x/x = 1, así que cada vez que hay una x "sobre la línea" y una "bajo la línea" puedes cancelarlas.)
Esta ley también te muestra por qué x0=1 :
Ejemplo: x2/x2 = x2-2 = x0 =1
La ley que dice que (xm)n = xmn
Primero multiplicas x "m" veces. Después tienes que hacer eso "n" veces, en total m×n veces.
Ejemplo: (x3)4 = (xxx)4 = (xxx)(xxx)(xxx)(xxx) = xxxxxxxxxxxx = x12
Así que (x3)4 = x3×4 = x12
La ley que dice que (xy)n = xnyn
Para ver cómo funciona, sólo piensa en ordenar las "x"s y las "y"s como en este ejemplo:
Ejemplo: (xy)3 = (xy)(xy)(xy) = xyxyxy = xxxyyy = (xxx)(yyy) = x3y3
La ley que dice que (x/y)n = xn/yn
Parecido al ejemplo anterior, sólo ordena las "x"s y las "y"s
Ejemplo: (x/y)3 = (x/y)(x/y)(x/y) = (xxx)/(yyy) = x3/y3
La ley que dice que
Para entenderlo, sólo recuerda de las fracciones que n/m = n × (1/m):
Ejemplo:
Y eso es todo
Si te cuesta recordar todas las leyes, acuérdate de esto:
siempre puedes calcular todo si entiendes las tres ideas de la parte de arriba de esta página.
Ah, una cosa más... ¿Qué pasa si x= 0?
Exponente positivo (n>0) 0n = 0
Exponente negativo (n<0) ¡No definido! (Porque dividimos entre 0)
Exponente = 0 Ummm ... ¡lee más abajo!
El extraño caso de 00
Hay dos argumentos diferentes sobre el valor correcto. 00 podría ser 1, o quizás 0, así que alguna gente dice que es "indeterminado":
x0 = 1, así que ... 00 = 1
0n = 0, así que ... 00 = 0
Cuando dudes... 00 = "indeterminado"
Exponentes
Los exponentes también se llaman potencias o índices
El exponente de un número nos dice cuántas veces se usa el número en una multiplicación.
En este ejemplo: 82 = 8 × 8 = 64
• En palabras: 82 se puede leer "8 a la segunda potencia", "8 a la potencia 2" o simplemente "8 al cuadrado"
Más ejemplos:
Ejemplo: 53 = 5 × 5 × 5 = 125
• En palabras: 53 se puede leer "5 a la tercera potencia", "5 a la potencia 3" o simplemente "5 al cubo"
Ejemplo: 24 = 2 × 2 × 2 × 2 = 16
• En palabras: 24 se puede leer "2 a la cuarta potencia" or "2 a la potencia 4" o simplemente "2 a la cuarta"
Y los exponentes hacen más fácil escribir muchas multiplicaciones
Ejemplo: 96 es más fácil de escribir y leer que 9 × 9 × 9 × 9 × 9 × 9
Puedes multiplicar cualquier número por sí mismo tantas veces como quieras con esta notación.
Así que, en general:
an te dice que multipliques a por sí mismo,
y hay n de esos a's:
Exponentes
...