ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Medidads De Tendencia Central


Enviado por   •  20 de Enero de 2014  •  600 Palabras (3 Páginas)  •  345 Visitas

Página 1 de 3

Medidas de de tendencia central

La medidas de centralización nos indican en torno a qué valor (centro) se distribuyen los datos.

La medidas de centralización son:

Moda

La moda es el valor que tiene mayor frecuencia absoluta.

Se representa por Mo.

Se puede hallar la moda para variables cualitativas y cuantitativas.

Hallar la moda de la distribución:

2, 3, 3, 4, 4, 4, 5, 5 Mo= 4

Si en un grupo hay dos o varias puntuaciones con la misma frecuencia y esa frecuencia es la máxima, la distribuciónes bimodal o multimodal, es decir, tiene varias modas.

1, 1, 1, 4, 4, 5, 5, 5, 7, 8, 9, 9, 9Mo= 1, 5, 9

Cuando todas las puntuaciones de un grupo tienen la misma frecuencia, no hay moda.

2, 2, 3, 3, 6, 6, 9, 9

Si dos puntuaciones adyacentes tienen la frecuencia máxima, la moda es el promedio de las dos puntuaciones adyacentes.

0, 1, 3, 3, 5, 5, 7, 8Mo = 4

Mediana

Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.

La mediana se representa por Me.

La mediana se puede hallar sólo para variables cuantitativas.

Cálculo de la mediana

1 Ordenamos los datos de menor a mayor.

2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.

2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5

3 Si la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales.

7, 8, 9, 10, 11, 12Me= 9.5

Media aritmética

La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total dedatos.

es el símbolo de la media aritmética.

Ejemplo

Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.

Medidas de dispersión

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión son:

Rango o recorrido

El rango es la diferencia entre el mayor y el menor de los datos de una distribución estadística.

Desviación media

La desviación respecto a la media es la diferencia entre cada valor de la variable estadística y la media aritmética.

Di = x - x

La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.

La desviación media se representa por

Ejemplo

Calcular la desviación media de la distribución:

9, 3, 8, 8, 9, 8, 9, 18

Varianza

La varianza es la media aritmética del cuadrado de las desviaciones respecto

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com