ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Oscilaciones Y Ondas


Enviado por   •  24 de Enero de 2012  •  1.891 Palabras (8 Páginas)  •  1.713 Visitas

Página 1 de 8

Oscilaciones y Ondas

Movimiento periódico u Oscilación: El movimiento oscilatorio es un movimiento en torno a un punto de equilibrio estable. Los puntos de equilibrio mecánico son, en general, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, un desplazamiento de la partícula con respecto a la posición de equilibrio (elongación) da lugar a la aparición de una fuerza restauradora que devolverá la partícula hacia el punto de equilibrio.

En términos de la energía potencial, los puntos de equilibrio estable se corresponden con los mínimos de la misma.

 Un movimiento armónico simple es un movimiento periódico.

 La oscilación de un péndulo plano es también un movimiento periódico.

 Una rotación con velocidad constante alrededor de un eje fijo es un movimiento periódico.

 La Tierra girando alrededor del Sol realiza un movimiento periódico.

Con un ejemplo se explicara la descripción de la oscilación:

X: distancia, posición o desplazamiento

Vx: velocidad

ax: aceleración

Fx: fuerza

Un cuerpo de masa m, se mueve sobre una guía horizontal sin fricción, como riel de aire de modo que solo puede ser en el eje X. el cuerpo esta conectado a un resorte de masa despreciable que puede estirarse o comprimirse. El extremo izquierdo del resorte esta fijo y el derecho esta unido al cuerpo.

La fuerza normal y gravitacional vertical siempre suman cero, X, Vx, ax y Fx pueden ser positivas, negativas o cero.

La aceleración esta dada por:

ax = Fx/m

n: normal

m.g: P

a: aceleración

F: fuerza

0: punto de equilibrio.

Fuerza de restitución: es la fuerza que tiende a regresar al objeto a su posición de equilibrio, solo puede haber oscilación si hay una fuerza de restitución que tiende a regresar al sistema al equilibrio.

Desplazamiento = 0

Fuerza de restitución = 0 Resorte en equilibrio

Si se desplaza el cuerpo hacia la derecha hacia X = A y lo soltamos, la fuerza neta y aceleración son hacia la izquierda. La rapidez aumenta al aproximar el cuerpo a la posición de equilibrio 0. cuando el cuerpo esta en cero la fuerza neta que actúa sobre el es cero pero, a causa de su movimiento (velocidad), rebasa la poción de equilibrio.

En el otro lado de esa posición la velocidad es a la izquierda pero la aceleración es a la derecha. La rapidez disminuye hasta que el cuerpo para. Ahora el cuerpo acelera hacia la derecha rebaso otra vez el equilibrio, y se detiene en el punto inicial X = A, listo para repetir el proceso.

Amplitud

Denotado con A, es la magnitud máxima del desplazamiento respecto al equilibrio, es decir, el máximo de /X/ y siempre es positiva, si el resorte de la figura es ideal el rango global del movimiento es 2 A. la unidad de A es el SI es el metro.

Una vibración completa, o ciclo, es un viaje redondo, digamos de A a –A regresando por cero hasta –A y volviendo a cero. El movimiento de un lado a otro (digamos –A a A) es medio ciclo.

Desplazamiento a la derecha, fuerza restauradora a la izquierda:

Periodo (T): es el tiempo que tarda un ciclo, y siempre es positivo. La unidad del periodo es el segundo pero a veces se expresa en segundos por ciclo.

Frecuencia (f): es el numero de ciclos en la unidad de tiempo, y siempre es positiva. La unidad de la frecuencia es el SI es Hertz.

Elongación, o alargamiento que sufre un cuerpo que se somete a esfuerzo de tracción

Frecuencia angular (w): representa la rapidez de cambio de una cantidad angular (no necesariamente relacionada con un movimiento rotacional) que siempre se mide en radianes, de modo que sus unidades son rad/sg. Dado que la frecuencia (f) esta en ciclos por segundos se considera que el numero 2Π tiene unidades rad/ciclo.

Movimiento Armónico Simple: el movimiento de una partícula en oscilación depende de la fuerza de restauración producida, es decir, es la oscilación con una fuerza de restitución que obedece a la ley de Hooke.

Ley de Hooke: si la fuerza de restitución de un resorte ideal es directamente proporcional al desplazamiento.

Fx = - K. X

K: constante de proporcionalidad, siempre es positiva y tiene unidades en N/m = Kg/sg². suponiendo que no hay fricción.

Fx: fuerza neta que actúa sobre el cuerpo.

Si la fuerza de restitución es directamente proporcional al desplazamiento respecto al equilibrio. La ecuación se denomina movimiento armónico simple:

La aceleración ax = d²x = Fx = - K.X

d²t m m

No es una aceleración constante

El signo (-) indica que la aceleración y el desplazamiento siempre tiene signos opuestos.

Ecuaciones del movimiento armónico simple: se obtendrán en función del tiempo, si se sabe que el movimiento armónico simple se presenta en los reloj, resortes y péndulos. La ecuación de un movimiento para un objeto en MAS se puede derivar mediante una relación entre el movimiento armónico simple y el circular uniforme, ya que el MAS es la proyección de la trayectoria de un movimiento circular uniforme sobre uno de los diámetros vertical u horizontal en un circulo.

X = A.Cos(ø)

Si el objeto

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com