Probabilidad Condicionada
Enviado por franki94 • 12 de Mayo de 2014 • 454 Palabras (2 Páginas) • 317 Visitas
Probabilidad condicionada
Sean A y B dos sucesos de un mismo espacio muestral E.
Se llama probabilidad del suceso B condicionado a A y se representa por P(B/A) a la probabilidad del suceso B una vez ha ocurrido el A.
Ejemplo:
Calcular la probabilidad de obtener un 6 al tirar un dado sabiendo que ha salido par.
Sucesos independientes
Dos sucesos A y B son independientes si
p(A/B) = p(A)
Sucesos dependientes
Dos sucesos A y B son dependientes si
p(A/B) ≠ p(A)
Al multiplicar la formula P(B/A) =P( A Ç B)/ P(A) por P( A); obtenemos la siguiente regla multiplicativa, esta es importante por que nos permite calcular la probabilidad de que ocurran dos eventos.
Teorema: si un experimento pueden ocurrir los eventos A y B, entonces P( A Ç B)= P( A) P(B/A). así la probabilidad de que ocurran A y B es igual a la probabilidad de que ocurra A multiplicada por la probabilidad de que ocurra B, dado que ocurre A.
Ø Si los eventos A y B son dependientes:
Ø Si los eventos A y B son independientes:
Ejemplo 1: Se selecciona una muestra aleatoria n = 2 de un lote de 100 unidades, se sabe que 98 de los 100 artículos están en buen estado. La muestra se selecciona de manera tal que el primer artículo se observa y se regresa antes de seleccionar el segundo artículo (con reemplazo), a) calcule la probabilidad de que ambos artículos estén en buen estado, b) si la muestra se toma sin reemplazo, calcule la probabilidad de que ambos artículos estén en buen estado.
A: El primer artículo está en buen estado.
B: El segundo artículo está en buen estado.
b) Si la muestra se toma “sin reemplazo” de modo que el primer artículo no se regresa antes de seleccionar el segundo entonces:
http://probabilidadyestadisticaitsav.blogspot.mx/2012/06/25-ley-multiplicativa.html
En la teoría de la probabilidad el teorema de Bayes es un resultado enunciado por Thomas Bayes en 17631 que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.
En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza,
...