ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Resumen estadística


Enviado por   •  5 de Abril de 2018  •  Apuntes  •  1.008 Palabras (5 Páginas)  •  78 Visitas

Página 1 de 5

Resumen estadística

Unidad temática I: PROBABILIDAD

  • Experimento aleatorio: es aquel en el que su resultado depende del azar.Ejemplo: lanzamiento de un dado,lanzamiento de una moneda...etc.El experimento puede ser realizado las veces que sean necesarias y como dijimos anteriormente "no sabemos el resultado pero si el conjunto de posibles soluciones",dicho conjunto se llama  espacio muestral.
  • Espacio muestral: consiste en el conjunto de todos los posibles resultados de un experimento aleatorio y se representa por una "E".Ejemplo: vamos a suponer el lanzamiento de un dado el cual,su espacio muestral es E:{1,2,3,4,5,6},otro experimento es el lanzamiento de dos monedas en donde,su espacio muestral es                        E:{(C,C),(X,X),(C,X),(X,C)}.Ahora si lanzamos una moneda y un dado obtendremos el siguiente espacio muestral E:{(1,C),(2,C),(3,C),(4,C),(5,C),(6,C),(1,X),(2,X),(3,X),(4,X),(5,X),(6,X)}....etc.

temática I: PROBABILIDAD

La TEORÍA DE PROBABILIDADES:

Sucesos o eventos aleatorios: es un subconjunto de un espacio muestral,es decir,un conjunto de posibles resultados que se pueden dar en un experimento aleatorio  y un dato importante es que "se representan con letras mayúsculas".Ejemplo: el lanzamiento de un dado y una moneda al mismo tiempo,en donde tenemos que el primer suceso es A= "obtener un número primo y cara" entonces                   A={(2,C),(3,C),(5,C)}.El segundo teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio,con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro.

  • Experimento aleatorio: es aquel en el que su resultado depende del azar.Ejemplo: lanzamiento de un dado,lanzamiento de una moneda...etc.El experimento puede ser realizado las veces que sean necesarias y como dijimos anteriormente "no sabemos el resultado pero si el conjunto de posibles soluciones",dicho conjunto se llama  espacio muestral.
  • Espacio muestral: consiste en el conjunto de todos los posibles resultados de un experimento aleatorio y se representa por la letra "E".Ejemplo: vamos a suponer el lanzamiento de un dado el cual,su espacio muestral es E={1,2,3,4,5,6},otro experimento es el lanzamiento de dos monedas en donde,su espacio muestral es                        E={(C,C),(X,X),(C,X),(X,C)}.Ahora si lanzamos una moneda y un dado obtendremos el siguiente espacio muestral E={(1,C),(2,C),(3,C),(4,C),(5,C),(6,C),(1,X),(2,X),(3,X),(4,X),(5,X),(6,X)}....etc.
  • suceo es B: "obtener número mayor que 4" entonces B={(5,C),(6,C),(5,X),(6,X)}.                              Hay diferentes tipos de sucesos(siguiendo con el ejemplo del lanzamiento del dado):
  1. Suceso imposible: es aquel que nunca puede ocurrir por lo tanto se lo representa (Ø) subconjunto vacío,por ejemplo "obtener un número mayor que 6".
  2. Suceso seguro: es aquel que ocurre siempre y que coincide con el espacio muestral por lo tanto se lo representa (E),por ejemplo "obtener un número menor que 7".
  3. Suceso elemental: es aquel que está formado por un solo elemento,por ejemplo "obtener un número mayor que 5" que está formado solamente por el {6}.
  4. Suceso compuesto: es aquel que está formado por más de un elemento,por ejemplo "obtener un número que sea múltiplo de 3" que está formado por el {3,6}.        
  5. Sucesos compatibles: dos sucesos,A y B son compatibles cuando tienen algún suceso elemental común.

temática I: PROBABILIDAD

La TEORÍA DE PROBABILIDADES:

Sucesos o eventos aleatorios: es un subconjunto de un espacio muestral,es decir,un conjunto de posibles resultados que se pueden dar en un experimento aleatorio  y un dato importante es que "se representan con letras mayúsculas".Ejemplo: el lanzamiento de un dado y una moneda al mismo tiempo,en donde tenemos que el primer suceso es A= "obtener un número primo y cara" entonces                   A={(2,C),(3,C),(5,C)}.El segundo teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio,con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro.

...

Descargar como (para miembros actualizados) txt (6 Kb) pdf (89 Kb) docx (12 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com