ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema De Bayes


Enviado por   •  3 de Mayo de 2013  •  420 Palabras (2 Páginas)  •  459 Visitas

Página 1 de 2

El Teorema de BAYES se apoya en el proceso inverso al que hemos visto en el Teorema de la Probabilidad Total:

Teorema de la probabilidad total: a partir de las probabilidades del suceso A (probabilidad de que llueva o de que haga buen tiempo) deducimos la probabilidad del suceso B (que ocurra un accidente).

Teorema de Bayes: a partir de que ha ocurrido el suceso B (ha ocurrido un accidente) deducimos las probabilidades del suceso A (¿estaba lloviendo o hacía buen tiempo?).

La fórmula del Teorema de Bayes es:

Ejercicio 1º: El parte meteorológico ha anunciado tres posibilidades para el fin de semana:

a) Que llueva: probabilidad del 50%.

b) Que nieve: probabilidad del 30%

c) Que haya niebla: probabilidad del 20%.

Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente:

a) Si llueve: probabilidad de accidente del 10%.

b) Si nieva: probabilidad de accidente del 20%

c) Si hay niebla: probabilidad de accidente del 5%.

Resulta que efectivamente ocurre un accidente y como no estabamos en la ciudad no sabemos que tiempo hizo (nevó, llovío o hubo niebla). El teorema de Bayes nos permite calcular estas probabilidades:

Las probabilidades que manejamos antes de conocer que ha ocurrido un accidente se denominan "probabilidades a priori" (lluvia con el 60%, nieve con el 30% y niebla con el 10%).

Una vez que incorporamos la información de que ha ocurrido un accidente, las probabilidades del suceso A cambian: son probabilidades condicionadas P (A/B), que se denominan "probabilidades a posteriori".

Vamos a aplicar la fórmula:

a) Probabilidad de que estuviera lloviendo:

La probabilidad de que efectivamente estuviera lloviendo el día del accidente (probabilidad a posteriori) es del 71,4%.

b) Probabilidad de que estuviera nevando:

La probabilidad de que estuviera nevando es del 21,4%.

c) Probabilidad de que hubiera niebla:

La probabilidad de que hubiera niebla es del 7,1%. Vamos a aplicar la fórmula:

a) Probabilidad de que estuviera lloviendo:

La probabilidad de que efectivamente estuviera lloviendo el día del accidente (probabilidad a posteriori) es del 71,4%.

b) Probabilidad de que estuviera nevando:

La probabilidad de que estuviera nevando es del 21,4%.

c) Probabilidad de que hubiera niebla:

La probabilidad de que hubiera niebla es del 7,1%.

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com