ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema de Bayes


Enviado por   •  30 de Abril de 2013  •  Tesis  •  334 Palabras (2 Páginas)  •  532 Visitas

Página 1 de 2

1.3.5 Teorema de Bayes

La interpretación más aceptada del teorema de Bayes, es que su estructura permite el calculo de probabilidades después de haber sido realizado un experimento (probabilidades aposteriori), basándose en el conocimiento de la ocurrencia de ciertos eventos que dependan del evento estudiado, o sea, se parte de probabilidades conocidas antes de efectuar el experimento (probabilidades apriori), las cuales son afectadas por las probabilidades propias del experimento (las que aparecen durante la ocurrencia del evento).

Continuando nuestro análisis sobre el teorema de Bayes, la probabilidad condicional de Ai dado B, para cualquier i, es:

Aplicando en el numerador la Regla de Multiplicación P(AiÇB) = P(Ai) P(B|Ai) y en el denominador el Teorema de Probabilidad Total P(B) = P(A1) P(B | A1) + P(A2) P(B | A2) + . . . + P(An) P(B | An), obtenemos la ecuación que representa al:

Teorema de Bayes

Una fábrica que produce material para la construcción tiene 3 máquinas, a las que se les denomina A, B y C. La máquina A produce tabique, la B adoquín y la C losetas. La máquina A produce el 50% de la producción total de la fábrica, la B el 30% y la C el 20%. Los porcentajes de artículos defectuosos producidos por las máquinas son, respectivamente, 3%, 4% y 5%. Si se selecciona un artículo al azar y se observa que es defectuoso, encontrar la probabilidad de que sea un tabique.

Solución

Definamos el evento D como sea un artículo defectuoso. De acuerdo a esto tenemos que:

P(A) = 0.5 P(D | A) = 0.03

P(B) = 0.3 P(D | B) = 0.04

P(C) = 0.2 P(D | C) = 0.05

Si el artículo del que deseamos calcular la probabilidad es un tabique, significa que es producido por la máquina A. También observamos que en la solución solamente participan los artículos defectuosos, ya que se pone por condición esta característica. Por lo tanto:

Diagrama de árbol:

Calcular la probabilidad de que al arrojar al aire tres monedas, salgan:

Tres caras.

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com