ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema Del Binomio


Enviado por   •  17 de Abril de 2013  •  560 Palabras (3 Páginas)  •  957 Visitas

Página 1 de 3

TEOREMA DEL BINOMIO

En Matemática el teorema del binomio es una fórmula que proporciona el desarrollo de la potencia n-ésima de n (siendo n, entero positivo) de un binomio. De acuerdo con el teorema, es posible expandir la potencia (x + y)n en una suma que implica términos de la forma axbyc, donde los exponentes b y c son números naturales con b + c = n, y el coeficiente a de cada término es un número entero positivo que depende de n y b. Cuando un exponente es cero, la correspondiente potencia es usualmente omitida del término. Por ejemplo,

El coeficiente a en el término de xbyc es conocido como el coeficiente binomial o (los dos tienen el mismo valor).

FORMULACION DEL TEOREMA

Este teorema establece: Usando la fórmula para calcular el valor de (que también es representado ocasionalmente como o ) se obtiene la siguiente representación:

El coeficiente de en el desarrollo de es

donde recibe el nombre de coeficiente binominal y representa el número de formas de escoger k elementos a partir de un conjunto con n elementos. Usualmente el teorema del binomio se expresa en la siguiente variante:

Como ejemplo, para n=2, n=3, n=4, utilizando los coeficientes del triángulo de pascal:

(2)

Para obtener la expansión de las potencias de una resta, basta con tomar -y en lugar de y en el caso anterior. La expresión (2) queda de la siguiente forma:

TEOREMA GENARALIZADO DEL BINOMIO (NEWTON)

Isaac Newton generalizó la fórmula para tomar otros exponentes, considerando una serie infinita:

(3)

Donde r puede ser cualquier número real (en particular, r puede ser cualquier número real, no necesariamente positivo ni entero), y los coeficientes están dados por:

(el k = 0 es un producto vacío y por lo tanto, igual a 1; en el caso de k = 1 es igual a r, ya que los otros factores (r − 1), etc., no aparecen en ese caso).

Una forma útil pero no obvia para la potencia recíproca:

La suma en (3) converge y la igualdad es verdadera siempre que los números reales o complejos x e y sean suficientemente cercanos, en el sentido de que el valor absoluto | x/y | sea menor a uno.

UN POCO DE HISTORIA SOBRE EL TEOREMA DEL BINOMIO

Atribuido a Newton, el teorema fue en realidad descubierto por primera vez por Abu Beck alrededor del año 1000. Aplicando los métodos de John Wallis de interpolación y extrapolación a nuevos problemas, Newton utilizó los conceptos de exponentes generalizados mediante los cuales una expresión polinómica se transformaba en una serie infinita. Así estuvo en condiciones de demostrar que un gran número de series ya existentes eran casos particulares, ya fuera diferenciación o bien por integración

El descubrimiento de la serie

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com