Trigonometria
Enviado por violett • 19 de Noviembre de 2011 • 933 Palabras (4 Páginas) • 654 Visitas
ORIGEN DE LA TRIGONOMETRÍA
La agrimensura y la navegación son prácticas que, desde sus orígenes, han requerido el cálculo de distancias cuya medición directa no resultaba posible; y otro tanto sucede en el ámbito de la astronomía. Para resolver este problema, los antiguos babilonios recurrieron ya a la trigonometría; es decir, a una serie de procedimientos que permiten poner en relación las medidas de los lados de un triángulo con las medidas de sus ángulos. La distancia desde un punto situado al pie de una montaña hasta su cima, por ejemplo, o desde una embarcación hasta un determinado punto de la costa, o la que separa dos astros, pueden resultar inaccesibles a la medición directa; en cambio, el ángulo que forma la visual dirigida a un accidente geográfico, o a un punto de la bóveda celeste, con otra visual fijada de antemano (como puede ser la dirigida según la horizontal), acostumbra ser fácil de medir mediante instrumentos relativamente sencillos. El objetivo de la trigonometría es establecer las relaciones matemáticas entre las medidas de las longitudes de los segmentos que forman los lados de un triángulo con las medidas de las amplitudes de sus ángulos, de manera que resulte posible calcular las unas mediante las otras.
________________________________________
ÁNGULOS
Asociada tradicionalmente a un capítulo tan importante de la actividad humana como es el de la observación astronómica, la noción de ángulo es básica en geometría (y obviamente en trigonometría). Su aparente sencillez no ha de ocultar el hecho de que el tratamiento de los ángulos como magnitudes susceptibles de ser medidas encierra una considerable complejidad; en efecto, un sistema de medición de los ángulos que permita compararlos eficazmente con otras magnitudes geométricas, como la longitud o la superficie, requiere tratarlos como magnitudes lineales, lo que sólo se consigue adecuadamente asociándolos a arcos de circunferencia. Pero el cálculo de la longitud de la circunferencia hace intervenir una magnitud irracional, el número pi; esto implica que cuestiones aparentemente sencillas, como por ejemplo la división de un ángulo cualquiera en tres partes iguales, no puedan resolverse fácilmente mediante una construcción geométrica que se sirva exclusivamente de la regla y el compás.
Dados tres puntos distintos, M, N y R, consideremos las dos semirrectas NM y NR del plano que contiene a los tres puntos; dichas semirrectas poseen un origen común N y dividen al plano en dos regiones, cada una de las cuales se denomina ángulo. Las semirrectas son los lados del ángulo y su origen común es el vértice.
A continuación estudiaremos un poco sólo los ángulos que contienen los triángulos.
1. Agudos
Son aquellos ángulos que miden más de 0º pero menos de 90º. Son característicos de los triángulos acutángulos.
2. Rectos
Son aquellos ángulos que miden 90º. Son característicos de los triángulos rectángulos.
3. Obtusos
Son aquellos ángulos que miden más de 90º pero menos de 180º. Son característicos de los triángulos obtusángulos.
________________________________________
TRIÁNGULOS
El triángulo
...