ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Unidad Uno

kantunchi4 de Febrero de 2015

742 Palabras (3 Páginas)180 Visitas

Página 1 de 3

Unidad 1

Regresión lineal simple

y correlación.

1.1 Modelo de regresión simple.

1.2 Supuestos.

1.3 Determinación de la ecuación de regresión.

1.4 Medidas de variación.

1.5 Cálculo de los coeficientes de correlación y

de determinación.

1.6 Análisis residual.

1.7 Inferencias acerca de la pendiente.

1.8 Aplicaciones.

En estadística la regresión lineal o ajuste lineal es un método matemático que modela la relación entre unavariable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:

: variable dependiente, explicada o regresando.

: variables explicativas, independientes o regresores.

: parámetros, miden la influencia que las variables explicativas tienen sobre el regresando.

donde es la intersección o término "constante", las son los parámetros respectivos a cada variable independiente, y es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con la regresión no lineal.

Ejemplo de una regresión lineal con una variable dependiente y una variable independiente.

El modelo de regresión lineal[editar]

El modelo lineal relaciona la variable dependiente Y con K variables explicitas (k = 1,...K), o cualquier transformación de éstas que generen un hiperplano de parámetros desconocidos:

(2)

donde es la perturbación aleatoria que recoge todos aquellos factores de la realidad no controlables u observables y que por tanto se asocian con el azar, y es la que confiere al modelo su carácter estocástico. En el caso más sencillo, con una sola variable explicita, el hiperplano es una recta:

(3)

El problema de la regresión consiste en elegir unos valores determinados para los parámetros desconocidos , de modo que la ecuación quede completamente especificada. Para ello se necesita un conjunto de observaciones. En una observación i-ésima (i= 1,... I) cualquiera, se registra el comportamiento simultáneo de la variable dependiente y las variables explicitas (las perturbaciones aleatorias se suponen no observables).

(4)

Los valores escogidos como estimadores de los parámetros , son los coeficientes de regresión sin que se pueda garantizar que coincida n con parámetros reales del proceso generador. Por tanto, en

(5)

Los valores son por su parte estimaciones o errores de la perturbación aleatoria.

Hipótesis del modelo de regresión lineal clásico[editar]

1. Esperanza matemática nula.

Para cada valor de X la perturbación tomará distintos valores de forma aleatoria, pero no tomará sistemáticamente valores positivos o negativos, sino que se supone tomará algunos valores mayores que cero y otros menores que cero, de tal forma que su valor esperado sea cero.

2. Homocedasticidad

para todo t

Todos los términos de la perturbación tienen la misma varianza que es desconocida. La dispersión de cada en torno a su valor esperado es siempre la misma.

3. Incorrelación.

para todo t,s con t distinto de s

Las covarianzas entre las distintas pertubaciones son nulas, lo que quiere decir que no están correlacionadas. Esto implica que el valor de la perturbación para cualquier observación muestral no viene influenciado por los valores de las perturbaciones correspondientes a otras observaciones muestrales.

4. Regresores no estocásticos.

5. No existen relaciones lineales exactas entre los regresores.

6. Suponemos que no existen errores de especificación en el modelo, ni errores de medida en las variables explicativas

7. Normalidad de

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com