Variables Aleatorias
Enviado por • 18 de Octubre de 2013 • 2.600 Palabras (11 Páginas) • 308 Visitas
Instituto Universitario de Tecnología
“Antonio José de Sucre”
Profesora: Bachilleres:
Argelias Contreras Marielys Palma
Mirna Pinto
Orbenis Herrera
Ronny Blanco
Introducción.
Una variable aleatoria es un valor numérico que corresponde al resultado de un experimento aleatorio, como el número de caras que se obtienen al lanzar 4 veces una moneda, el número de lanzamientos de un dado hasta que aparece el seis, el número de llamadas que se reciben en un teléfono en una hora, el tiempo de espera a que llegue un autobús.
Las variables aleatorias, como las estadísticas, pueden ser discretas o continuas.
Las variables aleatorias permiten definir la probabilidad como una función numérica (de variable real) en lugar de como una función de un conjunto dado.
Se dice que una variable aleatoria sigue una distribución uniforme si la función de densidad es constante en el intervalo en el que se encuentran todos los valores de la variable. La función de densidad o ley de probabilidad viene dada por:
Para ver la fórmula seleccione la opción "Descargar" del menú superior
Las distribuciones de probabilidad están relacionadas con las distribuciones de frecuencias. Una distribución de frecuencias teórica es una distribución de probabilidades que describe la forma en que se espera que varíen los resultados. Debido a que estas distribuciones tratan sobre expectativas de que algo suceda, resultan ser modelos útiles para hacer inferencias y para tomar decisiones en condiciones de incertidumbre.
Una distribución de frecuencias es un listado de las frecuencias observadas de todos los resultados de un experimento que se presentaron realmente cuando se efectuó el experimento, mientras que una distribución de probabilidad es un listado de las probabilidades de todos los posibles resultados que podrían obtenerse si el experimento se lleva a cabo.
Las distribuciones de probabilidad pueden basarse en consideraciones teóricas o en una estimación subjetiva de la posibilidad. Se pueden basar también en la experiencia.
A continuación trataremos más extensamente los conceptos de Variable Aleatoria, Valor Esperado, Pruebas Paramétricas y No-Paramétricas, Distribuciones de Probabilidad, Distribuciones Discretas y Continuas y Distribuciones Simétricas y Distribuciones Sesgadas.
Variables Aleatorias.
Es una variable estadística cuyos valores se obtienen de mediciones en algún tipo de experimento aleatorio. Formalmente, una variable aleatoria es una función, que asigna eventos (p.e., los posibles resultados de tirar un dado dos veces: (1, 1), (1, 2), etc.) a números reales (p.e., su suma).
Los valores posibles de una variable aleatoria pueden representar los posibles resultados de un experimento aún no realizado, o los posibles valores de una cantidad cuyo valor actualmente existente es incierto (p.e., como resultado de medición incompleta o imprecisa). Intuitivamente, una variable aleatoria puede tomarse como una cantidad cuyo valor no es fijo pero puede tomar diferentes valores; una distribución de probabilidad se usa para describir la probabilidad de que se den los diferentes valores.
Las variables aleatorias suelen tomar valores reales, pero se pueden considerar valores aleatorios como valores lógicos, funciones... El término elemento aleatorio se utiliza para englobar todo ese tipo de conceptos relacionados. Un concepto relacionado es el de proceso estocástico, un conjunto de variables aleatorias ordenadas (habitualmente por orden o tiempo).
Ejemplo.
Supongamos que se lanzan dos monedas al aire. El espacio muestral, esto es, el conjunto de resultados elementales posibles asociado al experimento, es
,
Donde (c representa "sale cara" y x, "sale cruz").
Podemos asignar entonces a cada suceso elemental del experimento el número de caras obtenidas. De este modo se definiría la variable aleatoria X como la función
dada por
El recorrido o rango de esta función, RX, es el conjunto
Caracterización de variables aleatorias.
Para comprender de una manera más amplia y rigurosa los tipos de variables, es necesario conocer la definición de conjunto discreto. Un conjunto es discreto si está formado por un número finito de elementos, o si sus elementos se pueden enumerar en secuencia de modo que haya un primer elemento, un segundo elemento, un tercer elemento, y así sucesivamente.
• Variable aleatoria discreta: una v.a. es discreta si su recorrido es un conjunto discreto. La variable del ejemplo anterior es discreta. Sus probabilidades se recogen en la función de cuantía (véanse las distribuciones de variable discreta).
• Variable aleatoria continua: una v.a. es continua si su recorrido no es un conjunto numerable. Intuitivamente esto significa que el conjunto de posibles valores de la variable abarca todo un intervalo de números reales. Por ejemplo, la variable que asigna la estatura a una persona extraída de una determinada población es una variable continua ya que, teóricamente, todo valor entre, pongamos por caso, 0 y 2,50 m, es posible. 6(véanse las distribuciones de variable continua)
• Variable aleatoria independiente: Supongamos que "X" e "Y" son variables aleatorias discretas. Si los eventos X = x / Y = y son variables aleatorias independientes. En tal caso: P(X = x, Y = y) = P( X = x) P ( Y = y).
De manera equivalente: f(x,y) = f1(x).f2(y).
Inversamente, si para todo "x" e "y" la función de probabilidad conjunta f(x,y) no puede expresarse sólo como el producto de una función de "x" por una función de "y" (denominadas funciones de probabilidad marginal de "X" e "Y" ), entonces "X" e "Y" son dependientes.
Si "X" e "Y" son variables aleatorias continuas, decimos que son variables aleatorias independientes si los eventos "X ≤ x", e "Y ≤ y" y son eventos independientes para todo "x" e "y" .
De manera equivalente: F(x,y) = F1(x).F2(y), donde F1(x) y F2(y) son las funciones
...