Muestreo aleatorio simple
Enviado por Isanyili • 1 de Diciembre de 2014 • Tesis • 1.253 Palabras (6 Páginas) • 398 Visitas
Muestreo probabilístico (aleatorio): En este tipo de muestreo, todos los individuos de la población pueden formar parte de la muestra, tienen probabilidad positiva de formar parte de la muestra. Por lo tanto es el tipo de muestreo que deberemos utilizar en nuestras investigaciones, por ser el riguroso y científico.
Muestreo no probabilístico (no aleatorio): En este tipo de muestreo, puede haber clara influencia de la persona o personas que seleccionan la muestra o simplemente se realiza atendiendo a razones de comodidad. Salvo en situaciones muy concretas en la que los errores cometidos no son grandes, debido a la homogeneidad de la población, en general no es un tipo de muestreo riguroso y científico, dado que no todos los elementos de la población pueden formar parte de la muestra. Por ejemplo, si hacemos una encuesta telefónica por la mañana, las personas que no tienen teléfono o que están trabajando, no podrán formar parte de la muestra.
Muestreo aleatorio simple
En un muestreo aleatorio simple todos los individuos tienen la misma probabilidad de ser seleccionados. La selección de la muestra puede realizarse a través de cualquier mecanismo probabilístico en el que todos los elementos tengan las mismas opciones de salir. Por ejemplo uno de estos mecanismos es utilizar una tabla de números aleatorios, o también con un ordenador generar números aleatorios, comprendidos entre cero y uno, y multiplicarlos por el tamaño de la población, este es el que vamos a utilizar.
Muestreo aleatorio estratificado
Es frecuente que cuando se realiza un estudio interese estudiar una serie de subpoblaciones (estratos) en la población, siendo importante que en la muestra haya representación de todos y cada uno de los estratos considerados. El muestreo aleatorio simple no nos garantiza que tal cosa ocurra. Para evitar esto, se saca una muestra de cada uno de los estratos.
Hay dos conceptos básicos:
Estratificación: El criterio a seguir en la formación de los estratos será formarlos de tal manera que haya la máxima homogeneidad en relación a la variable a estudio dentro de cada estrato y la máxima heterogeneidad entre los estratos.
Afijación: Reparto del tamaño de la muestra en los diferentes estratos o subpoblaciones. Existen varios criterios de afijación entre los que destacamos:
1. Afijación igual: Todos los estratos tienen el mismo número de elementos en la muestra.
2. Afijación proporcional: Cada estrato tiene un número de elementos en la muestra proporcional a su tamaño.
3. Afijación Neyman: Cuando el reparto del tamaño de la muestra se hace de forma proporcional al valor de la dispersión en cada uno de los estratos.
Muestreo aleatorio sistemático
Es un tipo de muestreo aleatorio simple en el que los elementos se seleccionan según un patrón que se inicia con una elección aleatoria.
Considerando una población de N elementos, si queremos extraer una muestra de tamaño n, partimos de un número h=N/n, llamado coeficiente de elevación y tomamos un número al azar a comprendido entre 1 y h que se denomina arranque u origen.
La muestra estará formada por los elementos: a, a+h, a+2h,....a+(n-1)h.
De aqui se deduce que un elemento poblacional no podrá aparecer más de una vez en la muestra. La muestra será representativa de la población pero introduce algunos sesgos cuando la población está ordenada en función de determinados criterios.
Muestreo aleatorio por conglomerados o áreas
Mientras que en el muestreo aleatorio estratificado cada estrato presenta cierta homogeneidad, un conglomerado se considera una agrupación de elementos que presentan características similares a toda la población.
Por ejemplo, para analizar los gastos familiares o para controlar el nivel de audiencia de los programas y cadenas de televisión, se utiliza un muestreo por conglomerados-familias que han sido elegidas aleatoriamente.
Las familias incluyen personas de todas las edades, muy representativas de las mismas edades y preferencias que la totalidad de
...