ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Historia Del Calculo


Enviado por   •  17 de Febrero de 2014  •  789 Palabras (4 Páginas)  •  283 Visitas

Página 1 de 4

El siglo XVII

En sus comienzos el cálculo fue desarrollado para estudiar ciertos problemas científicos y matemáticos:

Encontrar la tangente a una curva en un punto.

Encontrar el valor máximo o mínimo de una cantidad.

Encontrar la longitud de una curva, el área de una región y el volumen de un sólido. Entre otras.

En parte estos problemas fueron analizados por Leibniz y Newton. Los trabajos de Newton están motivados por sus propias investigaciones físicas mientras que Leibniz conserva un carácter más geométrico y, diferenciándose de newton, trata a la derivada como un cociente incremental, y no como una velocidad. Leibniz no habla de derivada sino de incrementos infinitamente pequeños, a los que llama diferenciales. Lo que Newton llamó fluxión, para Leibniz fue un cociente de diferenciales. Se puede decir que el cálculo de fluxiones de Newton se basa en algunas demostraciones algebraicas poco convincentes, y las diferenciales de Leibniz se presentan como entidades extrañas que, aunque se definen, no se comportan como incrementos.

El siglo XVIII

Durante buena parte del siglo, los hermanos Bernoulli inventaron el cálculo de variaciones y el matemático francés Monge la geometría descriptiva. Lagrange, realizó contribuciones al estudio de las ecuaciones diferenciales y la teoría de números, y desarrolló la teoría de grupos. Su contemporáneo Laplace escribió Teoría analítica de las probabilidades (1812).

Sin embargo el gran matemático del siglo fue el suizo Euler, quien aportó ideas fundamentales sobre el cálculo y otras ramas de las matemáticas y sus aplicaciones. Euler escribió textos sobre cálculo, mecánica y álgebra que se convirtieron en modelos a seguir para otros autores interesados en estas disciplinas. El éxito de Euler y de otros matemáticos para resolver problemas tanto matemáticos como físicos utilizando el cálculo sólo sirvió para acentuar la falta de un desarrollo adecuado y justificado de las ideas básicas del cálculo. La teoría de Newton se basó en la cinemática y las velocidades, la de Leibniz en los infinitésimos, y el tratamiento de Lagrange era completamente algebraica y basada en el concepto de las series infinitas. Todos estos sistemas eran inadecuados en comparación con el modelo lógico de la geometría griega, y este problema no fue resuelto hasta el siglo posterior.

El siglo XIX

Un problema importante fue definir el significado de la palabra función. Euler, Lagrange y el matemático francés Fourier aportaron soluciones, pero fue el matemático alemán Dirichlet quien propuso su definición en los términos actuales. En 1821, Cauchy, consiguió un enfoque lógico y apropiado del cálculo y se dedicó a dar una definición precisa de "función continua". Basó su visión del cálculo sólo en cantidades finitas y el concepto de límite. Esta solución planteó un nuevo problema,

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com