Historia Del Calculo
Enviado por garciachio • 11 de Febrero de 2014 • 1.696 Palabras (7 Páginas) • 223 Visitas
CÁLCULO
El Cálculo Infinitesimal es la rama de las matemáticas que comprende el estudio y aplicaciones del Cálculo Diferencial e Integral.
El Cálculo es la matemática del cambio: velocidades y aceleraciones. Cálculo es también la matemática de rectas tangentes, pendientes, áreas, volúmenes, longitudes de arco, centroides, curvaturas y otros diversos conceptos que han hecho que los científicos, ingenieros y economistas puedan modelar situaciones de la vida real.
El cálculo es fundamentalmente diferente de las matemáticas que hayas estudiado con anterioridad. Aunque las matemáticas previas al cálculo también versan sobre velocidades, aceleraciones, rectas tangentes, etc., aquí se tiene una diferencia fundamental entre las matemáticas previas y el propio cálculo: las matemáticas previas al cálculo son más estáticas, en tanto que el cálculo es más dinámico. El cálculo se interesa en el cambio y en el movimiento; trata de cantidades que se aproximan a otras cantidades. Podríamos definir al Cálculo como la parte de las matemáticas que trata con límites.
ANTECEDENTES
Los orígenes del cálculo se remontan unos 2500 años por lo menos, hasta los antiguos griegos, quienes hallaron áreas aplicando el “método de agotamiento”. Sabían cómo hallar el área de cualquier polígono al dividirlo en triángulos (método de triangulación), y sumar las áreas de estos triángulos A
Los griegos no aplicaron explícitamente los límites. Sin embargo, por razonamiento indirecto, Eudoxo (siglo v a. n. e.) utilizó el agotamiento para probar la conocida fórmula del área de un círculo: . 2 r A
Zenón de Elea, alrededor de 450 a. C., planteó una serie de problemas que estaban basados en el infinito. Por ejemplo, argumentó que el movimiento es imposible:
Si un cuerpo se mueve de A a B entonces, antes de llegar a B pasa por el punto medio, B1, de AB. Ahora bien, para llegar a B1 debe primero pasar por el punto medio B2 de AB1. Continuando con este argumento se puede ver que A debe moverse a través de un número infinito de distancias y por lo tanto no puede moverse.
Leucipo, Demócrito y Antifon hicieron contribuciones al método exhaustivo griego al que Eudoxo dio una base científica alrededor de 370 a. C. El método se llama exhaustivo ya que considera las áreas medidas como expandiéndolas de tal manera que cubran más y más del área requerida.
Sin embargo, Arquímedes, alrededor de 225 a. C. hizo uno de las contribuciones griegas más significativas. Su primer avance importante fue demostrar que el área de un segmento de parábola es 4/3 del área del triángulo con los mismos base y vértice y es igual a 2/3 del
área del paralelogramo circunscrito. Arquímedes construyó una secuencia infinita de triángulos empezando con uno de área A y añadiendo continuamente más triángulos entre los existentes y la parábola para obtener áreas.
No hubo más progresos hasta el siglo XVI cuando la mecánica empezó a llevar a los matemáticos a examinar problemas como el de los centros de gravedad. Luca Valerio (1552-1618) publicó De quadratura parabolae en Roma (1606) que continuaba los métodos griegos para atacar este tipo de problemas de calcular áreas.
Descartes produjo un importante método para deteminar normales en La Géometrie en 1637 basado en la doble intersección. De Beaune extendió sus métodos y los aplicó a las tangentes; en este caso la doble intesección se traduce en raíces dobles. Hudde descubrió un método más sencillo, llamado la Regla de Hudde, que básicamente involucra a la derivada. El método de Descartes y la Regla de Hudde tuvieron una influencia importante sobre Newton.
Tanto Torricelli como Barrow estudiaron el problema del movimiento con velocidad variable. La derivada de la distancia es la velocidad y la operación inversa nos lleva de la velocidad a la distancia. De aquí empezó a evolucionar naturalmente una concienciación de la inversa de la diferenciación y que Barrow estuviera familiarizado con la idea de que integral y derivada son inversas una de otra. De hecho, aunque Barrow nunca afirmó explícitamente el teorema fundamental del cálculo, estaba trabajando hacia el resultado y Newton continuaría en esta dirección y daría explícitamente el Teorema Fundamental del Cálculo.
ORIGEN DEL CÁLCULO.
El Cálculo Diferencial se origina en el siglo XVII al realizar estudios sobre el movimiento, es decir, al estudiar la velocidad de los cuerpos al caer al vacío ya que cambia de un momento a otro; la velocidad en cada instante debe calcularse teniendo en cuenta la distancia que recorre en un tiempo infinitesimalmente pequeño.
En 1666 Sir Isaac Newton (1642-1727), fue el primero en desarrollar métodos matemáticos para resolver problemas de esta índole. Inventó su propia versión del cálculo para explicar el movimiento de los planetas alrededor del Sol. Newton concibió el llamado Método de las Fluxiones, considerando a la curva como la trayectoria de un punto que fluye; denomina “momentum” de la cantidad de fluente al arco mucho muy corto, recorrido en un tiempo excesivamente pequeño, llamando la “razón del momentum” al tiempo correspondiente es decir, la velocidad.
Casi al mismo tiempo, el filósofo y matemático alemán Gottfried Wilhelm Leibniz (1646- 1716), realizó investigaciones similares e ideando símbolos matemáticos que se aplican hasta nuestros días. La concepción de Leibniz se logra al estudiar el problema de las tangentes y su inverso, basándose en el Triángulo Característico de
...