CURSO DE NIVELACIÓN: CAPÍTULO NÚMEROS REALES
Enviado por Douglas Vinueza • 26 de Diciembre de 2015 • Monografía • 38.729 Palabras (155 Páginas) • 576 Visitas
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS[pic 1][pic 2]
CURSO DE NIVELACIÓN 2015 – 2S CAPÍTULO: N Ú M E R O S R E A L E S D E B E R 3[pic 3]
[pic 4]
- Represente en un diagrama de Venn la clasificación de los números reales.
2.1 Representación decimal
- Ubique en la misma recta numérica los siguientes números racionales: a) 3.14
b) 4/5
c) 3/2
d) –1/3
e) –5/2
- Determine si los siguientes números son racionales o irracionales: a) 7.31[pic 5]
b) 0.505005000…[pic 6]
c) −3.5478
d) 5.070077000777…
Respuesta: a) Racional, b) Irracional, c) Racional, d) Irracional
- El producto de un número racional, diferente de cero, por un número irracional, es otro número irracional.
- Verdadero b) Falso
Respuesta: a)
- La fracción recíproca de un número irracional es otro número irracional.
- Verdadero b) Falso
Respuesta: a)
2.2 Operaciones binarias
- Defina:
- Operación binaria.
- Propiedad de cerradura.
- Propiedad conmutativa.
- Propiedad asociativa.
- Propiedad de elemento neutro.
- Propiedad de elemento inverso.
- Las operaciones de unión e intersección entre conjuntos son operaciones binarias.
- Verdadero b) Falso
Respuesta: a)
- Cree, de ser posible, una operación binaria que cumpla la propiedad conmutativa, pero no la asociativa.
- Cree, de ser posible, una operación binaria que tenga elemento inverso, pero no tenga elemento neutro.
[pic 7]
- Sea la operación binaria ∗: S × S ! S definida sobre el conjunto S = {α, β, γ} como se muestra en la siguiente tabla:
∗ | α | β | γ |
α | β | γ | α |
β | α | γ | α |
γ | β | γ | β |
Identifique la proposición VERDADERA. a) α ∗ β = β ∗ γ
b) γ ∗ α = α ∗ γ
c) α ∗ α = β ∗ β d) γ ∗ γ = α ∗ α e) β ∗ γ = α ∗ β
Respuesta: d)
[pic 8][pic 9]
- Si ∇ es una operación definida sobre los números enteros como a∇b = 2a − 3b . Determine el valor de verdad de las siguientes proposiciones, justificando su respuesta.
- La operación ∇ es binaria.
- La operación ∇ es conmutativa.
- La operación ∇ es asociativa.
- El elemento neutro de la operación ∇ es 0. e) 4∇3 = 3∇5
Respuesta: a) 1, b) 0, c) 0, d) 0, e) 0
2.3 Operaciones entre números reales
23) + =[pic 10][pic 11][pic 12]
- Verdadero b) Falso
Respuesta: b)
″
- Sin utilizar la calculadora, resuelva:
(0.888... −1)(3.033...) 1[pic 13]
+ 0.222...[pic 14]
0.555...
1
Respuesta: −[pic 15]
6
- Sin utilizar la calculadora, resuelva: 5.6 −
1 − 10 2
_ 0.2 + 4[pic 16]
3 3
73
Respuesta:[pic 17]
5
Al simplificar la siguiente expresión (0.06666.....)∃[pic 18]
∃
#
0.02222.....
′, se obtiene:
′
>
1 1 3
...