ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Campo Eléctrico


Enviado por   •  14 de Diciembre de 2014  •  1.822 Palabras (8 Páginas)  •  220 Visitas

Página 1 de 8

1) Campo Eléctrico:

La presencia de carga eléctrica en una región del espacio modifica las características de dicho espacio dando lugar a un campo eléctrico. Así pues, podemos considerar un campo eléctrico como una región del espacio cuyas propiedades han sido modificadas por la presencia de una carga eléctrica, de tal modo que al introducir en dicho campo eléctrico una nueva carga eléctrica, ésta experimentará una fuerza.

El campo eléctrico se representa matemáticamente mediante el vector campo eléctrico, definido como el cociente entre la fuerza eléctrica que experimenta una carga testigo y el valor de esa carga testigo (una carga testigo positiva).

La definición más intuitiva del campo eléctrico se la puede dar mediante la ley de Coulomb. Esta ley, una vez generalizada, permite expresar el campo entre distribuciones de carga en reposo relativo. Sin embargo, para cargas en movimiento se requiere una definición más formal y completa, se requiere el uso de cuadrivectores y el principio de mínima acción. A continuación se describen ambas.

Debe tenerse presente de todas maneras que desde el punto de vista relativista, la definición de campo eléctrico es relativa y no absoluta, ya que observadores en movimiento relativo entre sí medirán campos eléctricos o "partes eléctricas" del campo electromagnético diferentes, por lo que el campo eléctrico medido dependerá del sistema de referencia escogido.

Explicación:

Trata de decir que la existencia de una carga eléctrica en un espacio, altera el espacio convirtiéndolo en un campo eléctrico, en las cual su región es modificada por la presencia de las cargas eléctricas, lo cual conlleva a que al introducir en dicho campo otra carga nueva, esta experimente fuerza.

Matemáticamente hablando se puede representar con la siguiente ecuación

Donde es el potencial escalar y es el potencial vectorial tridimensional. Así, de acuerdo al principio de mínima acción, se plantea para una partícula en movimiento en un espacio cuadridimensional:

(2)

Donde es la carga de la partícula, es su masa y la velocidad de la luz. Reemplazando (1) en (2) y conociendo que , donde es el diferencial de la posición definida y es la velocidad de la partícula, se obtiene:

(3)

El término dentro de la integral se conoce como el lagrangiano del sistema; derivando esta expresión con respecto a la velocidad se obtiene el momento de la partícula, y aplicando las ecuaciones de Euler-Lagrange se encuentra que la variación temporal de la cantidad de movimiento de la partícula es:

(4)

De donde se obtiene la fuerza total de la partícula. Los dos primeros términos son independientes de la velocidad de la partícula, mientras que el último depende de ella. Entonces a los dos primeros se les asocia el campo eléctrico y al tercero el campo magnético. Así se encuentra la definición más general para el campo eléctrico:2

(5)

La ecuación brinda mucha información acerca del campo eléctrico. Por un lado, el primer término indica que un campo eléctrico es producido por la variación temporal de un potencial vectorial descrito como donde es el campo magnético; y por otro, el segundo representa la muy conocida descripción del campo como el gradiente de un potencial.

donde es el potencial escalar y es el potencial vectorial tridimensional. Así, de acuerdo al principio de mínima acción, se plantea para una partícula en movimiento en un espacio cuadridimensional:

(2)

donde es la carga de la partícula, es su masa y la velocidad de la luz. Reemplazando (1) en (2) y conociendo que , donde es el diferencial de la posición definida y es la velocidad de la partícula, se obtiene:

(3)

El término dentro de la integral se conoce como el lagrangiano del sistema; derivando esta expresión con respecto a la velocidad se obtiene el momento de la partícula, y aplicando las ecuaciones de Euler-LaGrange se encuentra que la variación temporal de la cantidad de movimiento de la partícula es:

(4)

De donde se obtiene la fuerza total de la partícula. Los dos primeros términos son independientes de la velocidad de la partícula, mientras que el último depende de ella. Entonces a los dos primeros se les asocia el campo eléctrico y al tercero el campo magnético. Así se encuentra la definición más general para el campo eléctrico:

(5)

La ecuación (5) brinda mucha información acerca del campo eléctrico. Por un lado, el primer término indica que un campo eléctrico es producido por la variación temporal de un potencial vectorial descrito como donde es el campo magnético; y por otro, el segundo representa la muy conocida descripción del campo como el gradiente de un potencial.

Campo eléctrico de una distribución lineal de carga. Una carga puntual P es sometida a una fuerza en dirección radial por una distribución de carga en forma de diferencial de línea ( ), lo que produce un campo eléctrico .

2) _ Carga de Fuerza:

Carga de prueba es, en física, un campo de fuerza es una forma de representar los efectos que las cargas eléctricas tienen unas sobre otras. En lugar de hablar sobre la fuerza que una carga positiva (+) ejerce sobre un electrón, podemos decir que la carga crea un "campo" de fuerza en el espacio vacío a su alrededor. Un electrón puesto en cualquier lugar dentro de ese campo es atraído hacia la carga +; una carga positiva colocada en el mismo lugar es repelida. Trate de poner electrones de "prueba" con el mouse para

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com