Cifras Significativas
Enviado por JoRg39 • 24 de Marzo de 2012 • 1.114 Palabras (5 Páginas) • 916 Visitas
En clase de física y química es frecuente que un alumno que está resolviendo un problema numérico pregunte por el número de decimales que debe escribir como resultado de una operación aritmética. También es frecuente que, ante la duda, presente un resultado final como 3,0112345 • 10-6, es decir, escriba todos los decimales que la calculadora le ofrece. El principal objetivo que se plantea este artículo es recordar las reglas que permiten cumplir con una correcta utilización de las cifras significativas de un número cuando se realizan operaciones matemáticas, pero también, puestos a conocer dichas reglas, analizar la idoneidad de las mismas respecto de la propagación de errores. Finalmente, una vez cumplidos estos objetivos, se explican las estrategias a seguir, respecto de la utilización de cifras significativas, en la resolución de problemas de física o química.
La presentación del resultado numérico de una medida directa, por ejemplo, de la longitud de una mesa, tiene poco valor si no se conoce algo de la exactitud de dicha medida. Una de las mejores maneras de trabajar consiste en realizar más de una medida y proceder con el tratamiento estadístico de los datos para establecer así un resultado con un buen límite de confianza. El procedimiento seguido en el registro de medidas en un laboratorio debe ir por este camino, con un tratamiento estadístico que genere un límite de confianza superior al 90%, aunque lo más normal es que éste sea del 68%, correspondiente a la desviación estándar absoluta. Ahora bien, fuera del laboratorio (y en ocasiones dentro) lo más común es utilizar el llamado convenio de cifras significativas.
Cifras significativas. Definición.
Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y se debe expresar con sus cifras significativas. Veamos un ejemplo sencillo: supongamos que medimos la longitud de una mesa con una regla graduada en milímetros. El resultado se puede expresar, por ejemplo como:
Longitud (L) = 85,2 cm
No es esta la única manera de expresar el resultado, pues también puede ser:
L = 0,852 m
L = 8,52 dm
L = 852 mm
etc…
Se exprese como se exprese el resultado tiene tres cifras significativas, que son los dígitos considerados como ciertos en la medida. Cumplen con la definición pues tienen un significado real y aportan información. Así, un resultado como
L = 0,8520 m
no tiene sentido ya que el instrumento que hemos utilizado para medir no es capaz de resolver las diezmilésimas de metro.
Por tanto, y siguiendo con el ejemplo, el número que expresa la cantidad en la medida tiene tres cifras significativas. Pero, de esas tres cifras sabemos que dos son verdaderas y una es incierta, la que aparece subrayada a continuación:
L = 0,852 m
Esto es debido a que el instrumento utilizado para medir no es perfecto y la última cifra que puede apreciar es incierta. ¿Cómo es de incierta? Pues en general se suele considerar que la incertidumbre es la cantidad más pequeña que se puede medir con el instrumento, aunque no tiene por qué ser así pues puede ser superior a dicha cantidad. La incertidumbre de la última cifra también se puede poner de manifiesto si realizamos una misma medida con dos instrumentos diferentes, en nuestro caso dos reglas milimetradas. Por extraño que pueda
...