ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ensayo de regresion lineal.


Enviado por   •  1 de Septiembre de 2015  •  Ensayo  •  2.203 Palabras (9 Páginas)  •  666 Visitas

Página 1 de 9

ENSAYO DE REGRESION LINEAL SIMPLE

A menudo resulta fantástico conocer el efecto que una o varias variables pueden causar sobre otra, e incluso predecir en mayor o menor grado valores en una variable a partir de otra. En una función podríamos estar interesados en estimar la altura media de los hijos cuyos padres representan una determinada  altura. De esta manera los métodos de regresión estudian la construcción de modelos para explicar o representar la dependencia de una variable respuesta o dependiente (Y) y la variable(s) explicativa(s) o dependiente(s), X.  Quisiera brevemente exponer algunas ideas centrales sobre la regresión lineal, que tiene lugar cuando la dependencia es de tipo lineal .

El análisis de regresión es una técnica estadística para investigar y modelar la relación entre variables. Son numerosas las aplicaciones de la regresión, y las hay en casi cualquier campo, incluyendo en ingeniería, ciencias físicas y químicas, economía, administración, ciencias biológicas y de la vida en las ciencias sociales. De hecho, puede ser que el análisis de regresión sea la técnica estadística más usada.

La ecuación Y =  se llama modelo de regresión lineal simple. Por costumbre se dice que “X” es la variable independiente y “Y” la variable dependiente. Sin embargo, eso causa confusión con el concepto de la independencia estadística, así que llamaremos a “X” la variable predictora o regresora y “Y” la variable de respuesta. Como la ecuación Y = solo tiene una variable regresora, se llama modelo de regresión lineal simple.        [pic 1][pic 2]

                     

Este ensayo explica el modelo de regresión lineal simple, un modelo con un solo regresor “X” que tiene una relación con una respuesta “Y”, donde la relación es una línea recta. Este modelo de regresión lineal simple es.

Y =                [pic 3]

Donde la ordenada al origen β0 y la pendiente β1 son constantes desconocidas, y es un componente aleatorio de error. Se supone que los errores tienen promedio cero y varianza 2 desconocida. Además, se suele suponer que los errores no están correlacionados. Esto quiere decir que el valor de un error no depende del valor de cualquier otro error.[pic 4][pic 5]

Conviene considerar que el regresor “X” está controlado por el analista de datos, y se puede medir con error despreciable, mientras que la respuesta “Y” es una variable aleatoria. Con lo que hay una distribución de probabilidades de “Y” para cada valor posible de “X”. La media de esta distribución es:

E (y/x) =  [pic 6]

Y la varianza es.

Var (y/x) = 2[pic 7]

Así, la media de “Y” es una función lineal de “X”, aunque la varianza de “Y” no depende del valor de “X”. Además ya que los errores no están correlacionados, las respuestas tampoco lo están.

A los parámetros  se les suele llamar coeficiente de regresión. Estos tienen una interpretación simple y, frecuentemente, útil. La pendiente  es el cambio de la media de la distribución de “Y” producido por un cambio unitario en “X”. Si el intervalo de los datos incluyen a X= 0, entonces la ordenada al origen, 0, es la media de la distribución de la respuesta “Y” cuando X= 0. Si no incluye al cero, 0 no tiene interpretación práctica.[pic 8][pic 9][pic 10][pic 11]

 (Montgomery, Peck, Vining, 2002, Pág. 1 y 13).

El modelo de regresión clásico establece que el valor medio de Y correspondiente a unos ciertos valores de X depende linealmente de estos valores de X:

E (Y/X1 = X1, X2 = X2,..., X1 = Xr) = b0 + b1x1 + b2x2 +... + brxr

Los valores de X (x1, x2,..., xr) son considerados como fijos. Para cada elemento de la muestra el valor de la variable Y (indicamos los valores de esta variable por y), puede expresarse en la forma

y = b0 + b1x1 + b2X2 +... + brxr + ε

Donde ε representa una cantidad aleatoria que va recoger la influencia de los factores no incluidos en “X”. El modelo de regresión lineal que consideramos es el siguiente:

y = b0 + b1x1 + b2x2 +... + brxr + ε

Donde se supone que ε, llamado residuo o error es una variable normal de valor medio 0, y varianza σ2, que es constante independientemente del valor de X considerado. La covarianza de los valores de ε para cada par de puntos es nula.

Si tenemos n valores muéstrales para (X, Y) se tiene:

y1 = b0 + b1x11 + b2x12 +. . . . + brx1r + ε1

y2 = b0 + b1x21 + b2x22 +. . . . + brx2r + ε2

. . .

y = b0 + b1xn1 + b2xn2 +. . . . + brxnr + εn                                                                                                                            

Con las condiciones

E (εi) = 0, E (εi, εi) = σ2, E (εi, εj) = 0

 (Huertas, Gámez, Trechera,  Fandiño, 2005,)

El análisis de regresión se usa con el propósito de predicción. La meta del  análisis de regresión  es  desarrollar  un  modelo  estadístico  que  se  pueda  usar  para  predecir  los valores de una variable dependiente o de respuesta basados en los valores de al menos una  variable  independiente  o explicativa.  Este  capítulo  se  centra  en  un  modelo  de regresión  lineal  simple, que usa una variable numérica  independiente “X”  para predecir la variable numérica dependiente “Y”.

...

Descargar como (para miembros actualizados) txt (12 Kb) pdf (190 Kb) docx (36 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com