Gases Ideales Tarea
Enviado por luisd94 • 2 de Octubre de 2013 • 5.406 Palabras (22 Páginas) • 479 Visitas
Índice
INTRODUCCION
GASES REALES
TEORIA CINETICA DE LOS GASES
LEY DE LOS GASES IDEALES
DIFERENCIA ENTRE LOS GASES IDEALES Y GASES REALES
GAS IDEAL UNA DESCRIPCION MACROSCOPICA
GAS IDEAL UNA DESCRIPCION MICROSCOPICA
LA ECUACION DE ESTADO DE UN GAS IDEAL
TEORIA CINETICA MOLECULAR
ECUACION GENERAL DE LOS GASES IDEALES
CARACTERISTICAS DEL GAS IDEAL
APLICACIÓN DE LAS LEYES DE LOS GASE S IDEALES
CONSTANTE UNIVERSAL DE LOS GASES
PROCESOS PARTICULARES
ENTALPIA
ENTROPIA
BIBLIOGRAFIA
INTRODUCCION
Los gases, aunque no se puedan ver, constituyen una gran parte de nuestro ambiente, y quehacer diario, ya que ellos son los responsables de transmitir: sonidos, olores, etc. Los gases poseen propiedades extraordinarias, como por ejemplo: que se puede comprimir a solamente una fracción de su volumen inicial, pueden llenar cualquier contenedor, o que el volumen de una gas comparado con el mismo componente, sólido o líquido tiene una diferencia de casi 800 veces la proporción.
A simple vista no apreciamos los gases, pero sabemos que están allí, y podemos saber que propiedades tienen en ese lugar en específico, una variación en la temperatura al igual que un cambio en la presión alteraría los factores de un gas. Sabiendo esto, podemos manipular los gases a nuestro antojo.
Aunque los gases resultan ser una importante aproximación en termodinámica su comportamiento es muy diferente al de los gases reales. A bajas temperaturas los gases reales experimentan procesos de condensación, transiciones de fase etc., que no presentan los gases ideales.
Objetivo general
El estudio teórico de los gases ideales sus propiedades y características
Objetivos específicos
El estudio de las leyes de los gases y el modelo teórico en el que se fundamentan
Conocer a que se denomina gas ideal
Comparar los gases ideales con los gases reales
GASES REALES
Los gases reales son los que en condiciones ordinarias de temperatura y presión se comportan como gases ideales; pero si la temperatura es muy baja o la presión muy alta, las propiedades de los gases reales se desvían en forma considerable de las de los gases ideales. Los gases reales no se expanden infinitamente, sino que llegaría un momento en el que no ocuparían más volumen. Esto se debe a que entre sus átomos/moléculas se establecen unas fuerzas bastante pequeñas, debido a los cambios aleatorios de sus cargas electrostáticas, a las que se llama fuerzas de Van der Waals.
Las condiciones o postulados en que se basa la teoría cinética de los gases no se pueden cumplir y la situación en que más se aproximan a ellas es cuando la presión y la temperatura son bajas; cuando éstas son altas el comportamiento del gas se aleja de tales postulados, especialmente en lo relacionado a que no hay interacción entre las moléculas de tipo gravitacional, eléctrica o electromagnética y a que el volumen ocupado por las moléculas es despreciable comparado con el
Volumen total ocupado por el gas; en este caso no se habla de gases ideales sino de gases reales.
Como el gas real no se ajusta a la teoría cinética de los gases tampoco se ajusta a la ecuación de estado y se hace necesario establecer una ecuación de estado para gases reales.
A temperaturas bajas (a las que el movimiento molecular se hace menor) y presiones altas o volúmenes reducidos (que disminuyen el espacio entre las moléculas), las moléculas de un gas pasan a ser influidas por la fuerza de atracción de las otras moléculas. Bajo determinadas condiciones críticas, todo el sistema entra en un estado ligado de alta densidad y adquiere una superficie límite. Esto implica la entrada en el estado líquido. El proceso se conoce como transición de fase o cambio de estado. La ecuación de Van der Waals permite estas transiciones de fase, y también describe una región de coexistencia entre ambas fases que termina en un punto crítico, por encima del cual no existen diferencias físicas entre los estados gaseoso y líquido. Estos fenómenos coinciden con las observaciones experimentales. En la práctica se emplean ecuaciones más complejas que la ecuación de Van der Waals.
TEORIA CINETICA DE LOS GASES
Con la llegada de la teoría atómica de la materia, las leyes empíricas antes mencionadas obtuvieron una base microscópica. El volumen de un gas refleja simplemente la distribución de posiciones de las moléculas que lo componen. Más exactamente, la variable macroscópica V representa el espacio disponible para el
movimiento de una molécula. La presión de un gas, que puede medirse con manómetros situados en las paredes del recipiente, registra el cambio medio de momento lineal que experimentan las moléculas al chocar contra las paredes y rebotar en ellas. La temperatura del gas es proporcional a la energía cinética media de las moléculas, por lo que depende del cuadrado de su velocidad. La reducción de las variables macroscópicas a variables mecánicas como la posición, velocidad, momento lineal o energía cinética de las moléculas, que pueden relacionarse a través de las leyes de la mecánica de Newton, debería de proporcionar todas las leyes empíricas de los gases. En general, esto resulta ser cierto.
La teoría física que relaciona las propiedades de los gases con la mecánica clásica se denomina teoría cinética de los gases. Además de proporcionar una base para la ecuación de estado del gas ideal, la teoría cinética también puede emplearse para predecir muchas otras propiedades de los gases, entre ellas la distribución estadística de las velocidades moleculares y las propiedades de transporte como la conductividad térmica, el coeficiente de difusión o la viscosidad.
La ecuación de estado del gas ideal no es del todo correcta: los gases reales no se comportan exactamente así. En algunos casos, la desviación puede ser muy grande. Por ejemplo, un gas ideal nunca podría convertirse en líquido o sólido por mucho que se enfriara o comprimiera. Por eso se han propuesto modificaciones de la ley de los gases ideales,
pV = nRT. Una de ellas, muy conocida y particularmente útil, es la ecuación de estado de Van der Waals (p + a/v2)(v - b) = RT, donde v = V/n, y a y b son parámetros ajustables determinados a partir de medidas experimentales en gases reales. Son parámetros de la sustancia y no constantes universales, puesto que sus valores varían de un gas a otro.
La ecuación de Van der Waals
...