ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Logica

Jeff_Marz25 de Febrero de 2014

2.794 Palabras (12 Páginas)277 Visitas

Página 1 de 12

LALÓGICA

La Lógica es una ciencia formal y que por tanto, no tiene contenido, sino que simplemente estudia las formas válidas de inferencia. Es el estudio de métodos y principios utilizados para distinguir el razonamiento correcto del incorrecto.

La lógica tradicional se basaba en el silogismo como razonamiento basado en el juicio categórico aristotélico. Hoy día la lógica utiliza como unidad básica la proposición y las reglas de inferencia en la argumentación discursiva.

Hay diferentes tipos de razonamientos, tales como: deductivo, inductivo y analógico (por analogía). Aunque este último se considera como un caso particular del individuo.

Razonamiento Deductivo

Según Napolitano Antonio es un razonamiento cuya conclusión es de consecuencia necesaria; es decir, dadas unas determinadas premisas, se dice necesariamente una conclusión.

Según Contreras Bernardo un razonamiento es deductivo, cuando en él se exige que la conclusión se derive necesariamente, forzosamente de las premisas. Por ello, se le considera rigurosamente.

Tradicionalmente, se distinguía el argumento deductivo como el paso de la observación universal, más aún, de la observación general a la observación particular, específicamente a la observación individual, es decir, de la ley al hecho; o también es el paso de un grado mayor de generalización a un grado de generalización menor expresado en la conclusión. La forma de un razonamiento deductivo es todo S es P. Por lo tanto, alguna S es P, es decir, de una proposición universal, se infiere una proposición particular.

La conclusión en un razonamiento deductivo se obtiene de las premisas dadas, es decir, no necesita recurrir de manera directa a la práctica o a la experiencia. Por esta razón, se expresa que la conclusión en este tipo de argumento se da una seguridad matemática.

Razonamiento Inductivo

Según Napolitano Antonio es un razonamiento inductivo es aquel de conclusión probable. Es decir, dadas las determinadas premisas, la conclusión que de ellas infiere es únicamente probable.

Tipos de razonamiento inductivo:

Razonamiento Inductivo Completo (o Perfecto): Un raciocinio inductivo es completo cuando en las premisas se incluyen todos los casos particulares, específicamente todos los casos individuales de la generalización correspondiente.

Razonamiento Inductivo incompleto (o Imperfecto): Un argumento inductivo es incompleto cuando en las premisas sólo se incluyen algunos de los casos particulares, más aún, casos individuales de la generalización correspondiente.

Razonamiento Analógico

Es cuando presenta las siguientes características sobre la base del conocimiento que de dos o más objetos son semejantes con respecto a una serie de cualidades que uno o más de ellos posee, además alguna otra propiedad o atributo se afirma en la conclusión que el o los objetos restantes también poseen esa nueva propiedad.

Tradicionalmente se señalaba el raciocinio por analogía como el paso de una observación a otra observación particular.

El argumento analógico es el fundamental de la mayoría de los raciocinios ordinarios en los que, a partir de experiencias, se trata de decir lo que puede reservar el futuro. No pretende ser matemáticamente seguro, sino probable. Por ello se dice que es una forma de razonamiento inductivo.

Razonamientos válidos y razonamientos no válidos

Contreras Bernardo dice que se hace necesario la observación para no caer en ambigüedades: se dice que los razonamientos pueden ser: ó válidos (correctos) o no válidos (inválidos, incorrectos, no correctos); mientras las proposiciones pueden ser: o verdaderos o falsas.

Un razonamiento es válido cuando su forma lógica es válida, independientemente del contenido informativo de las premisas y de la conclusión. Una forma lógica es válida cuando la conclusión se deriva necesariamente de las premisas.

Resumiendo, se puede decir que la validez de un argumento depende únicamente de su forma lógica: ya que hay razonamientos válidos que tienen conclusiones falsas y razonamientos no correctos que tienen conclusiones verdaderas. Lo mismo se puede afirmar de las premisas. En general, se puede afirmar que la validez de un argumento es independientemente de la verdad o falsedad tanto de las premisas como de la conclusión.

Falacias

Es un error en el razonamiento, o con mayor precisión, un fallo cometido en el proceso que arranca desde las premisas de un argumento a su conclusión. Como consecuencia de esta falacia, las premisas dejan de justificar la conclusión.

Cabe señalar en lógica una distinción entre falacias formales e informales. Una falacia formal es aquella en que el argumento viola una norma del sistema lógico del que el argumento es parte. Las falacias formales pueden producirse por distintos motivos. En argumentos donde la primera premisa es una proposición hipotética puede darse la falacia de afirmar el consecuente. Por ejemplo, puede decirse que si una persona es astronauta es que esa persona está entonces muy bien entrenada. No obstante, si se dijera que porque Fernando entrena muy a conciencia ha de seguirse de ello que es un astronauta, entonces se incurriría en la falacia de afirmar el argumento consecuente.

En aquellos juicios en los que la primera premisa es una disyuntiva (del tipo o esto o aquello), se puede cometer la falacia de afirmar la disyunción. Por ejemplo, supongamos que se dice que o bien Carla o bien Berta acudirán a la cita. Carla irá (con lo que afirmamos una de las partes de la disyunción de la premisa inicial). Por tanto, Berta no irá. (Si se procediera de este modo y para que fuera válido el argumento, la premisa mayor debería haber dicho: "o una o la otra; pero no ambas", eliminando así la ambigüedad de la proposición disyuntiva al sustituirla con otra proposición más contundente que denominamos disyunción exclusiva.

La lógica tradicional aristotélica se centra en los razonamientos silogísticos. Son éstos una forma de argumentos deductivos que constan de una premisa mayor, otra premisa menor y una conclusión. Un ejemplo de silogismo es el siguiente: todas las virtudes son dignas de elogio; la generosidad es una virtud, luego la generosidad es digna de elogio. Son varias las reglas que rigen las inferencias del silogismo correcto; si se viola se comete una falacia formal.

Las falacias informales no son en la práctica errores en la estructura formal de un argumento. Con todo, se basan o bien en un fallo evidente que resulta relevante en la conclusión o bien en alguna ambigüedad lingüística. Entre las falacias informales cabe mencionar las que defienden la validez de una conclusión apelando a la fuerza, a la piedad, a la autoridad o a las creencias populares. Inquirir por lo que se pregunta o asumir en las premisas lo que ha de ser demostrado es también una de las falacias informales que deben destacarse. Las falacias de ambigüedad incluyen conclusiones erróneas basadas en un uso equívoco del lenguaje. Considérese el siguiente argumento: todas las leyes son el resultado de una actividad legislativa; Newton descubrió algunas leyes; por tanto, Newton descubrió algunos resultados de la actividad legislativa. Esta conclusión errónea está basada en el uso equívoco de la palabra ley que aparece en las dos premisas.

Smith Karl divide las falacias en otros tipos en donde no incorpora los términos formales e informales sino que dice que existen la falacia de afirmación del consecuente, la falacia negación del antecedente y el esquema de cadena falso.

Falacia de Afirmación del Consecuente

Ejemplo: Analizar la validez de los argumentos siguiente:

18.

• Si una persona lee periódico Times, entonces está bien informada.

• Esta persona está bien informada.

Por lo tanto esta persona lee el Times.

Forma simbólica:

• p ( q

• q

• p

Considerando la tabla de la verdad asociada, se puede analizar la validez del argumento:

p q {[(p ( q) ( q] ( p}

1 1 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1 1

0 1 0 1 1 1 1 0 0

0 0 0 1 0 0 0 1 0

Como puede observarse el resultado no siempre es verdadero; así que el argumento es no válido (o bien, no es válido): si p ( q se reemplaza por q ( p, el argumento del ejemplo anterior sería válido. Esto es, el argumento sería válido si la proposición directa y la recíproca tuvieran iguales valores de verdad, lo cual no sucede en general. Por esta razón el argumento se llama a veces falacia de la recíproca. A menudo se puede demostrar que un argumento dado es no válido hallando un contraejemplo. En el ejemplo anterior se obtuvo o se encontró un contraejemplo examinando la tabla de verdad. El valor presente en el tercer renglón es falso, así que puede demostrarse que el argumento es falso en el caso en el que p sea falsa y q verdadera. En términos de éste ejemplo, podría ser que una persona nunca leyera el periódico times (p falsa) y todavía estar bien informada leyendo el periódico Tribune (q verdadera).

19.

• Si una persona es drogadicta, entonces fuma marihuana.

• Esta persona fuma marihuana.

Por lo tanto esta persona es drogadicta.

Puesto que este argumento

...

Descargar como (para miembros actualizados) txt (18 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com