Lípidos
Enviado por estefymiau • 18 de Enero de 2015 • Ensayo • 2.551 Palabras (11 Páginas) • 252 Visitas
TEMA: “LIPIDOS”
OBJETIVO GENERAL:
Conocer la naturaleza de los lípidos.
OBJETIVOS ESPECIFICOS
Estudiar las relaciones entre los lípidos y los carbohidratos.
Clasificar e identificar los lípidos.
LIPIDOS
1. Definición y clasificación
A diferencia de los carbohidratos, que se clasificaban en función de los grupos funcionales que poseían, los lípidos no pueden clasificarse de esta manera porque no poseen un grupo funcional característico. En este sentido, los lípidos son sustancias de origen biológico, solubles en disolventes orgánicos (cloroformo, benceno, etc.), y muy poco o nada solubles en agua. Como consecuencia de ello, el término lípido abarca a un gran número de compuestos orgánicos con estructuras muy diversas; no obstante, poseen algo en común, la porción principal de su estructura es de naturaleza hidrocarbonada y ésta es la razón de su escasa o nula solubilidad en agua.
Los lípidos desempeñan diversas funciones biológicas de gran importancia, ya que:
• constituyen las principales reservas energéticas de los seres vivos
• forman parte de las membranas celulares,
• regulan la actividad de las células y los tejidos
Así, las grasas, aceites, ciertas vitaminas y hormonas y la mayor parte de los componentes no proteicos de las membranas son lípidos. En este tema, discutiremos las estructuras y propiedades de las clases principales de lípidos.
Una forma de clasificar los lípidos es la que se basa en su comportamiento frente a la reacción de hidrólisis en medio alcalino (SAPONIFICACIÓN). Los lípidos saponificables son los que se hidrolizan en medio alcalino produciendo ácidos grasos, que están presentes en su estructura; en este grupo se incluyen las ceras, los triacilglicéridos, los fosfoglicéridos y los esfingolípidos. Los lípidos no saponificables son los que no experimentan esta reacción (terpenos, esteroides y prostaglandinas, en este último grupo también estarían incluidos los ácidos grasos)
2. Acidos grasos
Se conocen más de 100 ácidos grasos naturales. Se trata de ácidos carboxílicos, cuyo grupo funcional (-COOH) está unido a una larga cadena hidrocarbonada normalmente no ramificada.
Se diferencian entre sí en la longitud de la cadena y el número y las posiciones de los dobles enlaces que puedan tener. Los que no poseen dobles enlaces se denominan ácidos grasos saturados (“de hidrógeno”) y los que poseen uno o más dobles enlaces se denominan ácidos grasos insaturados. Los ácidos grasos en estado libre se encuentran en muy bajas cantidades, ya que en su mayoría se encuentran formando parte de la estructura de otros lípidos.
La Tabla recoge algunos ácidos grasos de interés. La mayoría de los ácidos grasos son compuestos de cadena lineal y numero par de átomos de carbono, comprendido entre 12 y 22. Así, el ácido palmítico (C16H32O2) y el ácido esteárico (C18H34O2), son dos ácidos grasos saturados saturados bastante abundantes, mientras que el ácido oleico (C18H34O2), junto con el linoléico (C18H32O2), son los ácidos grasos insaturados más comunes. Obsérvese que todos los ácidos grasos insaturados naturales presentan isomeria cis. El isómero cis- posee los dos hidrógenos hacia el mismo lado, mientras que en el isómero trans- se encuentran alternados.
La presencia de dobles enlaces con isomería cis-, en los ácidos grasos insaturados, hace que la cadena hidrocarbonada se doble en el espacio lo cuál, a su vez, dificulta su empaquetamiento con otras moléculas próximas y asegura que los lípidos que contienen estos ácidos grasos tengan bajos puntos de fusión y, por consiguiente, sean fluidos a temperaturas fisiológicas, lo que facilita, entre otras cosas, su transporte en nuestro organismo.
Principales ácidos grasos saturados e insaturados.
La siguiente figura muestra las diferencias existentes entre las estructuras espaciales de dos ácidos grasos, uno saturado y otro insaturado.
3. Ceras
Las ceras son lípidos saponificables, formados por la esterificación de un ácido graso y un monoalcohol de cadena larga.
Los alcoholes constituyentes de las ceras también tienen un número par de átomos de carbono, que oscila entre 16 y 34.
Dos de las ceras más comunes son la de carnauba, de origen vegetal, que se utiliza como cera para suelos y automóviles; y la lanolina (en la que el componente alcohólico es un esteroide) que se utiliza en la fabricación de cosméticos y cremas.
Las ceras son blandas y moldeables en caliente, pero duras en frío. En las plantas se encuentran en la superficie de los tallos y de las hojas protegiéndolas de la pérdida de humedad y de los ataques de los insectos. En los animales también actúan como cubiertas protectoras y se encuentran en la superficie de las plumas, del pelo y de la piel.
4. Triacilglicéridos
Aunque tradicionalmente se ha empleado el nombre de triglicéridos, las normas actuales de formulación recomiendan que este término deje de utilizarse y se cambie por el indicado. El nombre de Triacilglicéridos (TAGs) describe adecuadamente la estructura de estos compuestos, pues poseen el esqueleto del glicerol unido a (esterificado con) tres ácidos grasos (grupos acilos). Se trata, pues, de triésteres formados por tres moléculas de ácidos grasos y una molécula de glicerol.
El punto de fusión de los TAGs viene determinado por la naturaleza de los ácidos grasos que lo forman. Los TAGs que son sólidos a temperatura ambiente reciben el nombre de grasas (poseen mayor número de grupos acilos saturados), mientras que los que son líquidos a esta temperatura reciben el nombre de aceites (poseen mayor número de acilos insaturados). La presencia mayor o menor presencia de ácidos grasos saturados es responsable de un empaquetamiento más compacto o más débil, dando lugar a grasas o aceites, respectivamente.
No obstante las grasas y aceites naturales no son puros, sino una mezcla de TAGs.
Entre las grasas y aceites más comunes destaca, como TAG más puro, el aceite de oliva (84 % de ácido oléico). La Figura compara de forma sencilla la diferente composición en ácidos grasos de algunas grasas y aceites naturales.
Las grasas constituyen una forma eficiente de almacenamiento de energía metabólica.
Esto se debe a que las grasas están menos oxidadas (más hidrogenadas) que los glúcidos (glucógeno) de ahí que su rendimiento de energía
...