METODOS DE SUSTITUCION
Enviado por kathyaestrada2 • 19 de Marzo de 2013 • 465 Palabras (2 Páginas) • 888 Visitas
Monitoreo, reflexión y metas en el proceso de adquisición de conocimientos
5.1. Método de sustitución.
Este método de resolución de un sistema de ecuaciones consiste en despejar una incógnita en una de las ecuaciones y sustituir en la otra.
Describamos los pasos que conviene dar para aplicar este método:
1º. Se despeja una incógnita en una de las ecuaciones.
2º. Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo una ecuación con una sola incógnita.
3º. Se resuelve esta ecuación.
4º. El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada.
5º. Se ha obtenido, así, la solución.
5.2. Método de igualación.
Éste método consiste en despejar la misma incógnita en ambas ecuaciones e igualar las expresiones resultantes.
Describamos los pasos que conviene dar para aplicar este método:
1º. Se despeja la misma incógnita en ambas ecuaciones.
2º. Se igualan las expresiones, lo cual da lugar a una ecuación con una incógnita.
3º. Se resuelve esta ecuación.
4º. El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejara la otra incógnita.
5º. Se ha obtenido así la solución.
5.3. Método de reducción.
Este método consiste en preparar las dos ecuaciones para que una de las incógnitas tenga el mismo coeficiente en ambas. Restando las ecuaciones resultantes, miembro a miembro, se obtiene una ecuación con sólo una incógnita (se ha reducido el número de incógnitas).
Resumamos los pasos que debemos dar:
1º. Se preparan las dos ecuaciones (multiplicándolas por los números que convenga).
2º. Al restarlas desaparece una de las incógnitas.
3º. Se resuelve la ecuación resultante.
4º. El valor obtenido se sustituye en una de las iniciales y se resuelve.
5º. Se obtiene, así, la solución.
*Ejercicio resuelto por el método de reducción:
Puesto que el coeficiente de la y en la primera ecuación es doble que en la segunda, multiplicando ésta por 2 se igualarán los coeficientes. Restando, se eliminará esta incógnita.
Multiplicando por -2:
; ahora sumando ambas ecuaciones se obtiene lo siguiente: -7x = -21; x =
= 3;
Ahora sustituimos x=3 en cualquiera de las expresiones inciales 3x+4y=9 3•3+4y=9 4y=0 y=0.
6. Reglas prácticas para resolver sistemas de ecuaciones lineales.
Si una o las dos ecuaciones del sistema tienen un aspecto externo complicado, se empieza por “arreglarlas” hasta llegar a la expresión ax+by=c.
Recordemos las ventajas de cada uno de los tres métodos aprendidos:
* El método de sustitución es especialmente útil cuando una de las incógnitas tiene coeficiente 1 ó -1
...