Momento De Fuerza
Enviado por gigipba • 29 de Noviembre de 2012 • 747 Palabras (3 Páginas) • 964 Visitas
Momento de fuerza
τ = r F Sen θ
Στ = 0 (segunda condición de equilibrio)
La torca (o momento) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que ésta produzca una rotación alrededor de un eje o pivote.
En la definición de torca r es la distancia radial desde el eje o pivote al punto de aplicación de la fuerza y q es el ángulo agudo entre las direcciones de r y de F. Con frecuencia esta definición se escribe en términos del brazo de palanca, como el brazo de palanca es igual a r Sen θ entonces
τ = F d(brazo de palanca).
Nota que la definición de torca se parece mucho al producto cruz, entonces podemos decir
t = r x F
La torca es un vector y sus unidades son (N. m). La torca puede ser positiva o negativa. Por convención se dice que si el giro es contrario al movimiento de las manecillas del reloj es positiva y negativa cuando la rotación es en el mismo sentido en se mueven las manecillas del reloj.
Para que un cuerpo esté realmente en equilibrio la suma de fuerzas y la suma de torcas debe ser igual a cero.
Para resolver problemas que involucren momentos de torsión es necesario seguir los siguientes pasos.
0. Conseguir una estampa del santo más milagroso con marco y tripie.
00. Si es necesario llora un rato.
1. Diagrama de cuerpo libre.
2. Establecer ecuaciones de suma de fuerzas en x e y.
3. Elegir un punto para realizar la suma de torcas. Es conveniente elegir como punto de referencia aquel que contenga alguna incógnita.
4. Resolver el sistema de ecuaciones.
5. Si alguna de fuerzas de reacción (es decir aquellas generadas por un gozne o pivote) es negativa, indica que el sentido de fuerza es contrario al elegido en el diagrama.
6. Encomendarse al santo elegido.
Brazo de palanca.
Observa la siguiente estructura.
Si ponemos un pivote en el punto A (un pivote no es un argentino grandote, es un eje que le permite girar y sólo eso, el pivote no permite el movimiento de la estructura hacia arriba o hacia abajo) y queremos calcular la torca que genera la fuerza F sobre el punto A tengo que determinar el brazo de palanca que en este caso es la distancia entre el punto A la línea de acción de la fuerza.
En la figura anterior la línea punteada azul es la línea de acción de la fuerza. La línea punteada roja, d, es el brazo de palanca.
Ubica el triángulo formado por d (línea punteada roja), r (línea roja continua) y la línea de acción de la fuerza (azul). Nota que el ángulo formado por la fuerza F y la horizontal es el mismo que el formado por r (línea roja continua) y la línea de acción de la fuerza (azul). Por lo tanto r Sen θ es igual a d. La torca generada por F en el punto A es τA = F Sen θ.
Si esto se te hace complicado podemos buscar
...