Numero Aureo
Enviado por trek4022 • 5 de Enero de 2012 • 1.826 Palabras (8 Páginas) • 3.639 Visitas
Número áureo
El número de oro, número dorado, sección áurea, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción, representado por la letra griega (fi) (en honor al escultor griego Fidias), es el número irracional:
Sección áurea obtenida en una espiral logarítmica.
Se trata de un número que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en las partes de un cuerpo, y en la naturaleza como relación entre cuerpos, en la morfología de diversos elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, proporciones humanas, etc.
Historia del número áureo
El número áureo o la proporción áurea se estudió desde la antigüedad, ya que aparece regularmente en geometría. Se conoce ya de su existencia en los pentágonos regulares y pentáculos de las tabletas sumerias de alrededor del 3200 a. C.
En la antigua Grecia se utilizó para establecer las proporciones de los templos, tanto en su planta como en sus fachadas. Por aquel entonces no recibía ningún nombre especial, ya que era algo tan familiar entre los antiguos griegos que "la división de un segmento en media extrema y razón" era conocido generalmente como "la sección". En el Partenón, Fidias también lo aplicó en la composición de las esculturas. (la denominación Fi, por ser la primera letra de su nombre, la efectuó en 1900 el matemático Mark Barr en su honor).
El Partenón, mostrando los rectángulos áureos usados posiblemente en su construcción.
Platón (circa 428-347 a. C.), consideró la sección áurea como la mejor de todas las relaciones matemáticas y la llave a la física del cosmos.
La sección áurea se usó mucho en el Renacimiento, particularmente en las artes plásticas y la arquitectura. Se consideraba la proporción perfecta entre los lados de un rectángulo.
Da Vinci hizo las ilustraciones para una disertación publicada por Luca Pacioli en 1509 titulada De Divina Proportione, quizás la referencia más temprana en la literatura a otro de sus nombres, el de "Divina Proporción". Este libro contiene los dibujos hechos por Leonardo da Vinci de los cinco sólidos platónicos. Es probable que fuera Leonardo quien diera por primera vez el nombre de sectio áurea. En 1525, Alberto Durero publica Instrucción sobre la medida con regla y compás de figuras planas y sólidas donde describe cómo trazar con regla y compás la espiral basada en la sección áurea, que se conoce como “espiral de Durero”.
El rostro de la Gioconda proporcionado con rectángulos áureos.
Los artistas de Renacimiento utilizaron la sección áurea en múltiples ocasiones tanto en pintura, escultura como arquitectura para lograr el equilibrio y la belleza. Leonardo da Vinci, por ejemplo, la utilizó para definir todas las proporciones fundamentales en su pintura La última cena, desde las dimensiones de la mesa, hasta la disposición de Cristo y los discípulos sentados, así como las proporciones de las paredes y ventanas al fondo.
Leonardo da Vinci, en su cuadro de la Gioconda (o Mona Lisa) utilizó rectángulos áureos para plasmar el rostro de Mona Lisa. Se pueden localizar muchos detalles de su rostro, empezando porque el mismo rostro se encuadra en un rectángulo áureo.
El astrónomo Johannes Kepler (1571-1630), descubridor de la naturaleza elíptica de las órbitas de los planetas alrededor del Sol, mencionó también la divina proporción: “La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras; el otro, la división de una línea entre el extremo y su proporcional. El primero lo podemos comparar a una medida de oro; el segundo lo debemos denominar una joya preciosa”. Y, creyente como era dijo: "no cabe duda de que Dios es un gran matemático"
Hoy en día la sección áurea se puede ver en multitud de diseños. El más conocido y difundido sería la medida de las tarjetas de crédito, la cual también sigue dicho patrón, así como nuestro carné de identidad y también en las cajetillas de cigarrillos.
En la arquitectura moderna sigue usándose; por ejemplo, está presente en el conocido edificio de la ONU en Nueva York, el cual no es más que un gran prisma rectangular cuya cara mayor sigue las citadas proporciones.
La sección áurea en la naturaleza
Concha de nautilus en espiral logarítmica
En la naturaleza, hay muchos elementos relacionados con la sección áurea:
• Según el propio Leonardo de Pisa Fibonacci, en su Libro de los ábacos, la secuencia puede ayudar a calcular casi perfectamente el número de pares de conejos n meses después de que una primera pareja comienza a reproducirse (suponiendo que los conejos se empiezan a reproducir cuando tienen dos meses de edad).
• La relación entre la cantidad de abejas macho y abejas hembra en un panal.
• La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol (no sólo del nautilus)
• La relación entre los lados de un pentáculo *.
• La relación entre los lados de un pentágono *.
• La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).
• La distribución de las hojas en un tallo
• La relación entre las nervaduras de las hojas de los árboles
• La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a tomando como unidad la rama superior).
• La distancia entre las espirales de una piña.
...