TRABAJOS DE LA UNIVERSIDAD
Enviado por willyngton741524 • 25 de Marzo de 2013 • 5.721 Palabras (23 Páginas) • 466 Visitas
Probabilidad: Introducción
La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Ejemplo: tiramos un dado al aire y queremos saber cual es la probabilidad de que salga un 2, o que salga un número par, o que salga un número menor que 4.
El experimento tiene que ser aleatorio, es decir, que pueden presentarse diversos resultados, dentro de un conjunto posible de soluciones, y esto aún realizando el experimento en las mismas condiciones. Por lo tanto, a priori no se conoce cual de los resultados se va a presentar:
Ejemplos: lanzamos una moneda al aire: el resultado puede ser cara o cruz, pero no sabemos de antemano cual de ellos va a salir.
En la Lotería de Navidad, el "Gordo" (en España se llama "Gordo" al primer premio) puede ser cualquier número entre el 1 y el 100.000, pero no sabemos a priori cual va a ser (si lo supiéramos no estaríamos aquí escribiendo esta lección).
Hay experimentos que no son aleatorios y por lo tanto no se les puede aplicar las reglas de la probabilidad.
Ejemplo: en lugar de tirar la moneda al aire, directamente seleccionamos la cara. Aquí no podemos hablar de probabilidades, sino que ha sido un resultado determinado por uno mismo.
Antes de calcular las probabilidades de un experimento aleatorio hay que definir una serie de conceptos:
Suceso elemental: hace referencia a cada una de las posibles soluciones que se pueden presentar.
Ejemplo: al lanzar una moneda al aire, los sucesos elementales son la cara y la cruz. Al lanzar un dado, los sucesos elementales son el 1, el 2,.., hasta el 6.
Suceso compuesto: es un subconjunto de sucesos elementales.
Ejemplo: lanzamos un dado y queremos que salga un número par. El suceso "numero par" es un suceso compuesto, integrado por 3 sucesos elementales: el 2, el 4 y el 6
O, por ejemplo, jugamos a la ruleta y queremos que salga "menor o igual que 18". Este es un suceso compuesto formado por 18 sucesos elementales (todos los números que van del 1 al 18).
Al conjunto de todos los posibles sucesos elementales lo denominamos espacio muestral. Cada experimento aleatorio tiene definido su espacio muestral (es decir, un conjunto con todas las soluciones posibles).
Ejemplo: si tiramos una moneda al aíre una sola vez, el espacio muestral será cara o cruz.
Si el experimento consiste en lanzar una moneda al aire dos veces, entonces el espacio muestral estaría formado por (cara-cara), (cara-cruz), (cruz-cara) y (cruz-cruz).
Probabilidad: Relación entre sucesos
Entre los sucesos compuestos se pueden establecer distintas relaciones:
a) Un suceso puede estar contenido en otro: las posibles soluciones del primer suceso también lo son del segundo, pero este segundo suceso tiene además otras soluciones suyas propias.
Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga un número par. Vemos que el suceso a) está contenido en el suceso b).
Siempre que se da el suceso a) se da el suceso b), pero no al contrario. Por ejemplo, si el resultado fuera el 2, se cumpliría el suceso b), pero no el el a).
b) Dos sucesos pueden ser iguales: esto ocurre cuando siempre que se cumple uno de ellos se cumple obligatoriamente el otro y viceversa.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que salga múltiplo de 2. Vemos que las soluciones coinciden en ambos casos.
c) Unión de dos o más sucesos: la unión será otro suceso formado por todos los elementos de los sucesos que se unen.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par y b) que el resultado sea mayor que 3. El suceso unión estaría formado por los siguientes resultados: el 2, el 4, el 5 y el 6
d) Intersección de sucesos: es aquel suceso compuesto por los elementos comunes de dos o más sucesos que se intersectan.
Ejemplo: lanzamos un dado al aire, y analizamos dos sucesos: a) que salga número par, y b) que sea mayor que 4. La intersección de estos dos sucesos tiene un sólo elemento, el número 6 (es el único resultado común a ambos sucesos: es mayor que 4 y es número par).
e) Sucesos incompatibles: son aquellos que no se pueden dar al mismo tiempo ya que no tienen elementos comunes (su interesección es el conjunto vacio).
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número menor que 3, y b) que salga el número 6. Es evidente que ambos no se pueden dar al mismo tiempo.
f) Sucesos complementarios: son aquellos que si no se da uno, obligatoriamente se tiene que dar el otro.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número par, y b) que salga un número impar. Vemos que si no se da el primero se tiene que dar el segundo (y viceversa).
Cálculo de probabilidades
Probabilidad
Como hemos comentado anteriormente, la probabilidad mide la mayor o menor posibilidad de que se dé un determinado resultado (suceso) cuando se realiza un experimento aleatorio.
La probabilidad toma valores entre 0 y 1 (o expresados en tanto por ciento, entre 0% y 100%):
El valor cero corresponde al suceso imposible: lanzamos un dado al aire y la probabilidad de que salga el número 7 es cero (al menos, si es un dado certificado por la OMD, "Organización Mundial de Dados").
El valor uno corresponde al suceso seguro: lanzamos un dado al aire y la probabilidad de que salga cualquier número del 1 al 6 es igual a uno (100%).
El resto de sucesos tendrá probabilidades entre cero y uno: que será tanto mayor cuanto más probable sea que dicho suceso tenga lugar.
¿Cómo se mide la probabilidad?
Uno de los métodos más utilizados es aplicando la Regla de Laplace: define la probabilidad de un suceso como el cociente entre casos favorables y casos posibles.
P(A) = Casos favorables / casos posibles
Veamos algunos ejemplos:
a) Probabilidad de que al lanzar un dado salga el número 2: el caso favorable es tan sólo uno (que salga el dos), mientras que los casos posibles son seis (puede salir cualquier número del uno al seis). Por lo tanto:
P(A) = 1 / 6 = 0,166 (o lo que es lo mismo, 16,6%)
b) Probabilidad de que al lanzar un dado salga un número par: en este caso los casos favorables son tres (que salga el dos, el cuatro o el seis), mientras que los casos posibles siguen siendo seis. Por lo tanto:
P(A) = 3 / 6 = 0,50 (o lo que es lo mismo, 50%)
c) Probabilidad de que al lanzar un dado salga un número menor que 5: en este caso tenemos cuatro casos
...