Trabajo de fisica. LABORATORIO Nº 1 Principio de Arquímedes
Enviado por william steven Cuellar Santa Cruz • 29 de Mayo de 2017 • Trabajo • 3.423 Palabras (14 Páginas) • 375 Visitas
broken blade _ 07gost kami nomi
UNIVERSIDAD DEL BÍO-BÍO
FACULTAD DE CIENCIAS
DPTO CIENCIAS BÁSICAS
Dr.: Claudio Mège Vallejo
GUIAS DE LABORATORIOS
INGENIERÍA RECURSOS NATURLAES: FÍSICA II
INDICE
Principio de Arquímedes 2
TEOREMA DE TORRICELLI 3
Generador de Van der Graff. 4
CIRCUITOS: SERIE Y PARALELO 5
CONMUTADORES E INVERSORES 6
GENERACIÓN DE TENSIÓN DE INDUCCIÓN CON IMANES PERMANENTES 9
CIRCUITO R-C 10
GENERACIÓN DE UNA TENSIÓN INDUCIDA CON ELECTROIMANES 11
El imán permanente y el motor de corriente directa 13
RESISTENCIAS NTC o PTC 14
FOTORESISTOR 16
Se entregará un breve informe con: Número del informe; Acciones procedimentales, tablas, cálculos y conclusiones. Deben incluir el nombre de los integrantes, fecha de realización.
LABORATORIO Nº 1
Principio de Arquímedes
El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical E y hacia arriba igual al peso de fluido desalojado.
Si tenemos una porción de fluido que se encuentra en equilibrio, la resultante de las fuerzas debidas a la presión se debe anular con el peso de dicha porción de fluido. A esta resultante la denominamos empuje y su punto de aplicación es el centro de masa de la porción de fluido, denominado centro de empuje.
De este modo, para una porción de fluido en equilibrio con el resto, se cumple[pic 2]
E = ρ·g V
El peso de la porción de fluido es igual al producto de la densidad del fluido ρf por la aceleración de la gravedad g y por el volumen de dicha porción V.
ACTIVIDAD. Comparar la diferencia de peso de un cuerpo cuando se mide dentro y fuera del agua, con el peso del volumen de agua desplazado por el cuerpo.
1.- Mida con un dinamómetro el peso de un cuerpo w y luego dentro del agua.
2.- Mida el peso del volumen de agua desplazada por el cuerpo w y compare con la diferencia de peso registrado por el dinamómetro en el punto anterior.
3.- Utilizando el método anterior, determine la densidad ρ de los siguientes materiales; Madera, Acero, Vidrio, Piedra. Donde m es la masa del cuerpo y V el volumen de agua desalojada
[pic 3]
MATERIAL | MASA (Kg.) | VOLUMEN m3 | ρ kg./ m3 |
Madera | |||
Acero | |||
Piedra | |||
Vidrio |
LABORATORIO Nº 2
TEOREMA DE TORRICELLI
Es un caso particular del teorema de Bernoulli, dado por la siguiente expresión, en que se manifiesta el principio de conservación de la energía.
[pic 4]
Supongamos que tenemos un estanque con agua,, se le hace una perforación pequeña a una altura (medida desde el fondo). El estanque se encuentra destapado a presión atmosférica. Nuestro objetivo es determinar la rapidez con la que sale el agua por el orificio, cuando el nivel se encuentra a una altura sobre la perforación.[pic 5][pic 6][pic 7][pic 8]
Aplicando la Ecuación de Bernoulli [pic 9]
[pic 10]
La velocidad, en el punto 2, cuando desciende el agua, es aproximadamente nula . [pic 11][pic 12]
[pic 13]
[pic 14]
Ecuación conocida como Ley de Torricelli. Supongamos dos casos.
- Si entonces y esto significa que la velocidad depende solo de la presión.[pic 15][pic 16][pic 17]
- Si entonces , caso en que la velocidad es como si fuera caída libre.[pic 18][pic 19]
Para comprobar la ecuación de Torricelli , como es casi caída libre, la velocidad la determina de manera indirecta y la compara con la de Torricelli.[pic 20]
En caída libre, si conocemos la posición inicial y final, saliendo el flujo del agujero de manera horizontal, se tiene:
[pic 21]
La componente porque el flujo es horizontal. Luego se tiene:[pic 22][pic 23][pic 24]
Ecuación paramétrica, en que eliminamos el parámetro t.
[pic 25]
Las coordenadas (x, y) las puede medir y reemplazar en la ecuación, para compararla con la de Torricelli. Repetir 6 puntos distintos. Tabule y muestre los cálculos realizados.
LABORATORIO Nº 3
Generador de Van der Graff.
Su invento fue realizado por Van der Graff en 1931, es un equipo que permite obtener una diferencia de potencial (d.d.p.) extremadamente alto, dependiendo de sus características inherentes y condiciones de humedad.[pic 26]
Consta de dos peines y una esfera hueca donde se acumulan las cargas que son transportadas por una cinta de hule que pasa por dos poleas (inferior y superior).
Por efecto punta, en la parte inferior se extraen cargas (su signo depende de los materiales), por ello supongamos que la cinta adquiera cargas negativas, por tanto en la polea será igual y positiva.
Por el mismo efecto punta, en la parte superior, se extraen las cargas de la cinta y son transportadas a la esfera.
Como depende del material, por ejemplo: cinta es de goma y la polea es de nylon cubierto con capa de plástico, en la polea se crea una carga negativa y la goma positiva, donde ésta la transporta hacia arriba terminando en la esfera.
...