Vigas Hiperestaticas
Enviado por • 5 de Abril de 2014 • 246 Palabras (1 Páginas) • 790 Visitas
INDICE
Introducción 2
3.1 Apoyos Redundantes 3
3.2 Métodos de aplicación 3
3.2.1 Doble integración 4
3.2.2 Área de momentos 8
3.2.3 Superposición 14
3.3 Vigas continuas 18
Conclusión 23
Bibliografía 24
Introducción
Son aquellas vigas que, para su cálculo, presentan más incógnitas que ecuaciones. En general, una estructura es hiperestática o estáticamente indeterminada cuando está en equilibrio pero las ecuaciones de la estática resultan insuficientes para determinar todas las fuerzas internas o las reacciones.
Existen diversas formas de hiperestaticidad:
- Una estructura es internamente hiperestática si las ecuaciones de la estática no son suficientes para determinar los esfuerzos internos de la misma.
- Una estructura es externamente hiperestática si las ecuaciones de la estática no son suficientes para determinar fuerzas de reacción de la estructura al suelo o a otra estructura.
- Una estructura es completamente hiperestática si es internamente y externamente hiperestática.
Una forma de enfocar la resolución de las vigas hiperestáticas consiste en descomponer la viga inicial en varias vigas cuyo efecto sumado equivalga a la situación original. Las solicitaciones externas, cargas y reacciones, generan cortante, momento y deformación, siendo válido el principio de descomposición de las vigas en vigas cuyas acciones sumen el mismo efecto.
Los problemas hiperestáticos requieren condiciones adicionales usualmente llamadas ecuaciones de compatibilidad que involucran fuerzas o esfuerzos internos y desplazamientos de puntos de la estructura. Existen varios métodos generales que pueden proporcionar estas ecuaciones:
-Método matricial de la rigidez
-Teoremas de Castigliano
-Teoremas de Mohr
- Teorema de los tres momentos
3.1 Apoyos redundantes
Se define como el número de acciones redundantes o exceso de reacciones internas y externas, que no es posible determinar por medio del equilibrio estático. Se
...