Probabilidad Condicional
Enviado por sarahi2514 • 8 de Julio de 2014 • 311 Palabras (2 Páginas) • 5.050 Visitas
ESTADISTICA Y PROBABILIDAD
Problema # 1
10. En cierta ciudad, el 40% de las personas se consideran conservadores (C), el 35% se consideran liberales (L) y el 25% se consideran independientes (I). Durante la elección particular, el 45% de los conservadores votaron, el 40% de los liberales votaron y el 60% de los independientes votaron. Supongamos que una persona se selecciona aleatoriamente.
(a) Encuentre la probabilidad de que la persona vote.
(b) si la persona votó, encuentre la probabilidad de que el votante sea Liberal.
a) P(V)= 0.47, P(C/V)= 29.8%
b) P(V)= 0.47, P(C/V)= 38.3%
c) P(V)= 0.47, P(C/V)= 31.9%
d) P(V)= 0.47, P(C/V)= 3.3%
e) P(V)= 1000, P(C/V)= 3.3%
Problema # 2
En una universidad, la altura del 4% de los hombres y el 1% de las mujeres es mayor a 6 pies. Además, el 60% de los estudiantes son mujeres. Supongamos que la altura de un estudiante seleccionado al azar, es superior a los 6 pies. Encuentre la posibilidad de que el estudiante sea mujer.
P= (0.6) (0.01)+ (0.4) (0.04)= 0.022
P (b/c) = (P(b)*P(c/b))/0.022= ((0.6)(0.01))/0.022= 0.27=27%
Problema # 3
3. En una planta de artículos electrónicos, se sabe que por experiencia que la probabilidad de que un nuevo trabajador que haya asistido al programa de capacitación de la compañía y conozca la cuota de producción es de 0.86. Además la probabilidad de que conozca la cuota de producción, es de 0.35 para aquel que no haya asistido al programa de capacitación. Si el 80% de todos los empleados de ingreso reciente Asisten al programa. ¿Cuál es la probabilidad de que el nuevo empleado conozca la cuota de producción?
PA (empleados que asisten al programa) = 0.8.
PA _ (empleados que no asistieron) = 0.2.
P_B/A (empleado que conozca el programa y asistió) = 0.86
PBA (empleados que conocen la cuota pero no asistieron) = 0.35
¿Cuál es la probabilidad de que el nuevo empleado conozca la cuota de producción?
p= (A∩B)+P (B∩A)
P= (.8) (.86) + (.35) (.2) = .758
...