ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Probabilidad Condicional


Enviado por   •  28 de Febrero de 2015  •  241 Palabras (1 Páginas)  •  350 Visitas

Probabilidad Condicional

La probabilidad de que un evento $B$ ocurra cuando se sabe que ya ocurrio un evento $A$ se llama probabilidad condicional y se denota por MATH que por lo general se lee como probabilidad de que "ocurra B dado que ocurrió A". Esta probabilidad se define como:

MATH

La probabilidad condicional es una función de probabilidad, MATH definida como

MATH $:$ $\QTR{cal}{A}$ $\rightarrow $ $\left[ 0,1\right] $

$B$ $\mapsto $ MATH

¿ Es MATH una función de probabilidad?

MATH es una función de probabilidad porque satisface los tres axiomas

Axioma I

MATH para todo evento $B$.

Como

MATH

entonces dividiendo por $P\left( A\right) $ se tiene los términos de la desigualdad se tiene

MATH

Axioma II

MATH

Como

MATH

Axioma III

Si MATH es una sucesión de eventos mutuamente excluyentes, entonces

MATH

Como

MATH

como los eventos MATHson mutuamente excluyentes, entonces los eventos MATH son también mutuamente excluyentes y así

MATH

Ejemplo

1. La antena de una instalación de radar recibe, con probabilidad $p$, una señal útil con una interferencia superpuesta, y con probabilidad $1-p$ solo la interferencia pura. Al suceder una señal útil interferida, la instalación indica la existencia de cualquier señal con probabilidad $P_{1}$, cuando aparece una interferencia pura con la probabilidad $P_{2}$. Sí la instalación ha indicado la existencia de cualquier señal, determinar la probabilidad de que esta indicación haya sido ocasionada por una señal útil con interferencia superpuesta.

Solución:

probabilidad_condicional.gif

Sean U: el evento la señal es útil con interferencia superpuesta

I : el evento la señal es útil con interferencia pura

S: el evento que indica ocurre una señal

Con base en el diagrama , la probabilidad se puede calcular así:

MATH

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com