Teoria Del Caos
Enviado por LandaetaxD • 20 de Junio de 2015 • 1.655 Palabras (7 Páginas) • 310 Visitas
INTRODUCCIÓN
Hace poco más de 20 años se ha estado produciendo una revolución en el mundo de las ideas científicas que no ha sido conocida por el público en general. Han surgido ideas nuevas muy útiles para describir y entender la multitud de fenómenos que se da en diversas ramas del conocimiento. Nos referimos a los fractales y al caos. En campos como el de la física, las matemáticas, la biología, la medicina, la economía, la lingúística, por mencionar sólo algunos, se han dado situaciones que al ser tratadas con los procedimientos en uso no han podido ser explicadas satisfactoriamente. Sólo con el advenimiento de las ideas nuevas es que ha sido posible progresar en el conocimiento de fenómenos antes no comprendidos (Braun, 1996).
A raíz de lo anterior, parte de la comunidad científica en todo el mundo ha hablado incesantemente de caos, desorden, aperiodicidad, para explicar muchos fenómenos que se suceden en la naturaleza y en experimentos controlados de laboratorio, que se caracterizan por tener un comportamiento que no puede ser descrito por leyes matemáticas sencillas. El descubrimiento del caos determinista ha forzado un cambio sustancial en la filosofía de la ciencia: por una parte, establece límites a nuestra capacidad para predecir un comportamiento; por otra, abre un nuevo espacio para comprender muchos fenómenos aleatorios que suceden en varios campos del conocimiento. En los movimientos de los planetas de nuestro Sistema Solar encontramos comportamientos desordenados, así como en los cambios climáticos, el ritmo cardiaco, la vida económica y las epidemias que atacan a la humanidad, por nombrar sólo algunos (Schifter, 1996).
Por otro lado, cuando enfrentamos un problema por primera vez, cuando queremos comprender cómo funciona una cosa, normalmente hacemos simplificaciones. Es tan sencillo como considerar que, si estudiamos el movimiento de un cuerpo, conviene despreciar la fricción; que si la Tierra se desplaza alrededor del Sol, ojalá que su trayectoria forme un círculo. Sin embargo, no siempre las cosas o fenómenos físicos, químicos, biológicos, etc., se pueden representar tan fácil como uno quisiera. Por ejemplo, empeñarse en reproducir con todo detalle un paisaje boscoso utilizando tan sólo elementos de la geometría clásica (círculos, triángulos, esferas, etc.) es una tarea ardua y muchas veces improductiva.
Es claro que tales objetos son más complicados que un círculo, un cono o una esfera; sin embargo, podemos servirnos de ellos para simplificar nuestros intentos de reproducir la realidad. Basta hacer a un lado la dificultad de la figura y buscar la facilidad en el método de trabajo; quizá así descubramos que detrás del nacimiento o la formación de un cuerpo complejo no necesariamente se esconde un mecanismo muy elaborado.
A este tipo de formas geométricas que, entre otras propiedades, contienen una imagen de sí mismas en cada una de sus partes, se le llama ahora fractales, y hace ya más de una década que inundaron el mundo científico con un conjunto de nuevas reglas para enfrentarse con el reto de conocer y describir la naturaleza. Su lenguaje se permeó a campos increíblemente diversos de las ciencias naturales y sociales y ha hecho de las matemáticas un instrumento novedoso para las artes (Talanquer, 1996).
HISTORIA DEL CAOS
Durante la pasada década, físicos, biólogos, astrónomos y economistas crearon un modelo teórico que les sirviera para comprender la complejidad que podemos observar en la naturaleza. La nueva disciplina, llamada ciencia del caos o teoría del caos, ofrece un método para descubrir orden y concierto donde antes sólo se veía el azar, la irregularidad, lo impredecible, en una palabra, lo caótico. Como dice Douglas Hofstaedter, 1979, uno de los matemáticos que más intensamente se ha ocupado del tema: "Sucede que una misteriosa clase de caos acecha detrás de una fachada de orden y que, sin embargo, en lo más profundo del caos acecha una clase de orden todavía más misterioso".
A diferencia de los fenómenos de los que se ocupan la teoría de la relatividad y la mecánica cuántica, los sistemas que ahora se describen como caóticos pueden observarse sin telescopios ni microscopios. Y es que, a pesar de haber surgido de un arduo esfuerzo matemático, la teoría del caos es un saber de lo cotidiano, de cosas que incluso intrigan a los niños: ¿cómo se forman las nubes? o ¿por qué el viento produce remolinos de arena? Todos estos procesos aparentemente desordenados presentan ciertas características cuantificables: su desarrollo en el tiempo depende muy sensiblemente del estado actual, es decir, de cómo están distribuidas las variables en el instante en que se comienza la observación del fenómeno en cuestión, razón por la cual, aun no siendo aleatorio, lo parece (Braun, 1996).
Edward Lorenz, uno de los padres de la teoría del caos, trabajó en el problema de predecir el tiempo; para tal efecto, tenía una computadora que calculaba el tiempo con 12 ecuaciones; y sin embargo, La máquina no predijo el tiempo, pero en principio predijo como sería el tiempo probablemente. Un día, en 1961, Lorenz quiso ver unos datos nuevamente. Introdujo los números de nuevo a la computadora, pero para ahorrar papel y tiempo,
...