Estadistica General
Enviado por djmunozmo • 18 de Marzo de 2013 • 843 Palabras (4 Páginas) • 457 Visitas
Estadística descriptiva e inferencial
[editar]Resultados
De la distribución normal se derivan muchos resultados, incluyendo rangos de percentiles ("percentiles" o "cuantiles"), curvas normales equivalentes, stanines, z-scores, y T-scores. Además, un número de procedimientos de estadísticos de comportamiento están basados en la asunción de que esos resultados están normalmente distribuidos. Por ejemplo, el test de Student y el análisis de varianza (ANOVA) (véase más abajo). La gradación de la curva campana asigna grados relativos basados en una distribución normal de resultados.
[editar]Tests de normalidad
Artículo principal: Test de normalidad.
Los tests de normalidad se aplican a conjuntos de datos para determinar su similitud con una distribución normal. La hipótesis nula es, en estos casos, si el conjunto de datos es similar a una distribución normal, por lo que un P-valor suficientemente pequeño indica datos no normales.
Prueba de Kolmogórov-Smirnov
Test de Lilliefors
Test de Anderson–Darling
Test de Ryan–Joiner
Test de Shapiro–Wilk
Normal probability plot (rankit plot)
Test de Jarque–Bera
Test omnibús de Spiegelhalter
[editar]Estimación de parámetros
[editar]Estimación de parámetros de máxima verosimilitud
Véase también: Máxima verosimilitud.
Supóngase que
son independientes y cada una está normalmente distribuida con media μ y varianza σ 2 > 0. En términos estadísticos los valores observados de estas n variables aleatorias constituyen una "muestra de tamaño n de una población normalmente distribuida. Se desea estimar la media poblacional μ y la desviación típica poblacional σ, basándose en las valores observados de esta muestra. La función de densidad conjunta de estas n variables aleatorias independientes es
Como función de μ y σ, la función de verosimilitud basada en las observaciones X1, ..., Xn es
con alguna constante C > 0 (de la cual, en general, se permitiría incluso que dependiera de X1, ..., Xn, aunque desapareciera con las derivadas parciales de la función de log-verosimilitud respecto a los parámetros tenidos en cuenta, véase más abajo).
En el método de máxima verosimilitud, los valores de μ y σ que maximizan la función de verosimilitud se toman como estimadores de los parámetros poblacionales μ y σ.
Habitualmente en la maximización de una función de dos variables, se podrían considerar derivadas parciales. Pero aquí se explota el hecho de que el valor de μ que maximiza la función de verosimilitud con σ fijo no depende de σ. No obstante, encontramos que ese valor de μ, entonces se sustituye por μ en la función de verosimilitud y finalmente encontramos el valor de σ que maximiza la expresión resultante.
Es evidente que la función de verosimilitud es una función decreciente de la suma
...