Teoria De Conjuntos
Enviado por ensayos123456789 • 3 de Octubre de 2013 • 636 Palabras (3 Páginas) • 282 Visitas
La teoría de conjuntos más elemental es una de las herramientas básicas del lenguaje matemático. Dados unos elementos, unos objetos matemáticos como números o polígonos por ejemplo, puede imaginarse una colección determinada de estos objetos, un conjunto. Cada uno de estos elementos pertenece al conjunto, y esta noción de pertenencia es la relación relativa a conjuntos más básica. Los propios conjuntos pueden imaginarse a su vez como elementos de otros conjuntos. La pertenencia de un elemento a a un conjunto A se indica como a ∈ A.
Una relación entre conjuntos derivada de la relación de pertenencia es la relación de inclusión. Una subcolección de elementos B de un conjunto dado A es un subconjunto de A, y se indica como B ⊆ A.
Ejemplos.
Los conjuntos numéricos usuales en matemáticas son: el conjunto de los números naturales N, el de los números enteros Z, el de los números racionales Q, el de los números reales R y el de los números complejos C. Cada uno es subconjunto del siguiente:
\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}
El espacio tridimensional E3 es un conjunto de objetos elementales denominados puntos p, p ∈ E3. Las rectas r y planos α son conjuntos de puntos a su vez, y en particular son subconjuntos de E3, r ⊆ E3 y α ⊆ E3.
Álgebra de conjuntos[editar · editar código]
Artículo principal: Álgebra de conjuntos.
Existen unas operaciones básicas que permiten manipular los conjuntos y sus elementos, similares a las operaciones aritméticas, constituyendo el álgebra de conjuntos:
Unión. La unión de dos conjuntos A y B es el conjunto A ∪ B que contiene cada elemento que está por lo menos en uno de ellos.
Intersección. La intersección de dos conjuntos A y B es el conjunto A ∩ B que contiene todos los elementos comunes de A y B.
Diferencia. La diferencia entre dos conjuntos A y B es el conjunto A \ B que contiene todos los elementos de A que no pertenecen a B.
Complemento. El complemento de un conjunto A es el conjunto A∁ que contiene todos los elementos (respecto de algún conjunto referencial) que no pertenecen a A.
Diferencia simétrica La diferencia simétrica de dos conjuntos A y B es el conjunto A Δ B con todos los elementos que pertenecen, o bien a A, o bien a B, pero no a ambos a la vez.
Producto cartesiano. El producto cartesiano de dos conjuntos A y B es el conjunto A × B que contiene todos los pares ordenados (a, b) cuyo primer elemento a pertenece a A y su segundo elemento b pertenece a B.
Teoría axiomática de conjuntos[editar · editar código]
La teoría informal de conjuntos apela a la intuición para determinar como se comportan los conjuntos. Sin embargo, es sencillo plantear cuestiones acerca de las propiedades de estos que llevan a contradicción si se razona de esta manera, como la
...