Valor Presente Valor Futuro
Enviado por ESBEYDII • 15 de Febrero de 2013 • 969 Palabras (4 Páginas) • 2.462 Visitas
Valor presente
En vista de que el consumo presente se valora en mayor grado que el consumo futuro, no pueden compararse directamente. Una forma de estandarizar el análisis, consiste en medir el consumo en términos de su valor presente. El valor presente es el valor actual de uno o más pagos que habrían de recibirse en el futuro.
La fórmula para calcular el valor presente es la siguiente:
VF
(1 + i)n
En donde:
VP = Valor presente
VF = Cantidad futura o Valor Futuro
1 = Constante
i = Tasa de interés anual
n = Periodo de capitalización, unidad de tiempo, años, meses, diario,…
El valor presente es aquél que calcula el valor que una cantidad a futuro tiene en este instante, ya que si pretendemos obtener cierto valor en algún préstamo, cobro, etc., a futuro, primero se debe calcular lo que se posee imaginariamente en el presente, sin embargo, ese valor siempre va a depender de la tasa de interés anual.
Ejemplo:
¿Cuánto se pagaría en este momento por el derecho a recibir $100 dentro de 1 año, con una tasa de interés del 10%?
1.- Identificar los valores:
VF = $100
i = 0.1
n = 1 año
VP = ?
2.- Aplicar la fórmula:
VF
(1 + i)n
3.- Sustituir la fórmula:
VP = 100 = 100 = 99.90
(1+0.1) 1.1
4.- Resultado:
Por tanto, si la tasa de interés es de 10%, $99.90 es el valor presente de recibir $100 de aquí a un año, que es lo máximo que estaría dispuesto a pagar hoy por obtener $100 dentro de un año.
Ejercicios:
1.- Calcular la cantidad que se pagaría en este momento por el hecho de recibir $ 3,500 dentro de 5 años, con una tasa de interés anual de 15%?
VF = $3,500
i = 0.15
n = 5 años
VP = ?
VF
(1 + i)n
VP = 3500 = 3500 = 3500 = 1741.29
(1+0.15)5 (1.15)5 2.01
Por lo tanto, la cantidad que se pagaría en este momento por el hecho de recibir $3,500 dentro de 5 años con una tasa de interés de 15%, es de $1,741.29
2.- Calcular la cantidad que se pagaría en este momento por el hecho de recibir $900,000 dentro de 8 años, con una tasa de interés anual de 10%
VF = $ 900,000
i = 0.1
n = 8 años VF
(1 + i)n
VP = 900000 = 900000 = 900000 = 420560.74
(1+0.1)8 (1.1)8 2.14
Por lo tanto la cantidad que se pagaría en este momento por el hecho de recibir $900, 000 dentro de 8 años, con una tasa anual de 10%, es de $420,560.74
3.- Calcular la cantidad que se pagaría en este momento por el hecho de recibir $500 dentro de 3 meses, con una tasa de interés anual de 12%
C = $500
i = 0.03 [(0.12 anual/12 meses) * 3 meses]
n
...