Control Electronico
Enviado por hamper • 27 de Agosto de 2012 • 2.134 Palabras (9 Páginas) • 441 Visitas
Sistema de control
Los sistemas de control según la Teoría Cibernética se aplican en esencia para los organismos vivos, las máquinas y las organizaciones. Estos sistemas fueron relacionados por primera vez en 1948 por Norbert Wiener en su obra Cibernética y Sociedad con aplicación en la teoría de los mecanismos de control. Un sistema de control está definido como un conjunto de componentes que pueden regular su propia conducta o la de otro sistema con el fin de lograr un funcionamiento predeterminado, de modo que se reduzcan las probabilidades de fallos y se obtengan los resultados buscados. Hoy en día los procesos de control son síntomas del proceso industrial que estamos viviendo. Estos sistemas se usan típicamente en sustituir un trabajador pasivo que controla una determinado sistema ( ya sea eléctrico, mecánico, etc. ) con una posibilidad nula o casi nula de error, y un grado de eficiencia mucho más grande que el de un trabajador. Los sistemas de control más modernos en ingeniería automatizan procesos en base a muchos parámetros y reciben el nombre de Controladores de Automatización Programables (PAC).
Los sistemas de control deben conseguir los siguientes objetivos:
1. Ser estables y robustos frente a perturbaciones y errores en los modelos.
2. Ser eficiente según un criterio preestablecido evitando comportamientos bruscos e irreales.
Necesidades de la supervisión de procesos
Limitaciones de la visualización de los sistemas de adquisición y control.
Control vs Monitorización
Control software. Cierre de lazo de control.
Recoger, almacenar y visualizar información.
Minería de datos.
Contenido
• 1 Clasificación de los Sistemas de Control según su comportamiento
• 2 Tipos de Sistemas de Control
• 3 Características de un Sistema de Control
• 4 La Ingeniería en los Sistemas de Control
Clasificación de los Sistemas de Control según su comportamiento
Definiciones
Supervisión: acto de observar el trabajo Y tareas de otro (individuo o máquina) que puede no conocer el tema en profundidad.
1. Sistema de control de lazo abierto: Es aquel sistema en que solo actúa el proceso sobre la señal de entrada y da como resultado una señal de salida independiente a la señal de entrada, pero basada en la primera. Esto significa que no hay retroalimentación hacia el controlador para que éste pueda ajustar la acción de control. Es decir, la señal de salida no se convierte en señal de entrada para el controlador. Ejemplo 1: el llenado de un tanque usando una manguera de jardín. Mientras que la llave siga abierta, el agua fluirá. La altura del agua en el tanque no puede hacer que la llave se cierre y por tanto no nos sirve para un proceso que necesite de un control de contenido o concentración. Ejemplo 2: Al hacer una tostada, lo que hacemos es controlar el tiempo de tostado de ella misma entrando una variable (en este caso el grado de tostado que queremos). En definitiva, el que nosotros introducimos como parámetro es el tiempo.
Estos sistemas se caracterizan por:
• Ser sencillos y de fácil concepto.
• Nada asegura su estabilidad ante una perturbación.
• La salida no se compara con la entrada.
• Ser afectado por las perturbaciones. Éstas pueden ser tangibles o intangibles.
• La precisión depende de la previa calibración del sistema.
2. Sistema de control de lazo cerrado: Son los sistemas en los que la acción de control está en función de la señal de salida. Los sistemas de circuito cerrado usan la retroalimentación desde un resultado final para ajustar la acción de control en consecuencia. El control en lazo cerrado es imprescindible cuando se da alguna de las siguientes circunstancias:
- Cuando un proceso no es posible de regular por el hombre.
- Una producción a gran escala que exige grandes instalaciones y el hombre no es capaz de manejar.
- Vigilar un proceso es especialmente duro en algunos casos y requiere una atención que el hombre puede perder fácilmente por cansancio o despiste, con los consiguientes riesgos que ello pueda ocasionar al trabajador y al proceso.
Sus características son:
• Ser complejos, pero amplios en cantidad de parámetros.
• La salida se compara con la entrada y le afecta para el control del sistema.
• Su propiedad de retroalimentación.
• Ser más estable a perturbaciones y variaciones internas.
Un ejemplo de un sistema de control de lazo cerrado sería el termotanque de agua que utilizamos para bañarnos. Otro ejemplo sería un regulador de nivel de gran sensibilidad de un depósito. El movimiento de la boya produce más o menos obstrucción en un chorro de aire o gas a baja presión. Esto se traduce en cambios de presión que afectan a la membrana de la válvula de paso, haciendo que se abra más cuanto más cerca se encuentre del nivel máximo.
Tipos de Sistemas de Control
Los sistemas de control son agrupados en tres tipos básicos:
1. Hechos por el hombre. Como los sistemas eléctricos o electrónicos que están permanentemente capturando señales de estado del sistema bajo su control y que al detectar una desviación de los parámetros pre-establecidos del funcionamiento normal del sistema, actúan mediante sensores y actuadores, para llevar al sistema de vuelta a sus condiciones operacionales normales de funcionamiento. Un claro ejemplo de este será un termostato, el cual capta consecutivamente señales de temperatura. En el momento en que la temperatura desciende o aumenta y sale del rango, este actúa encendiendo un sistema de refrigeración o de calefacción.
1.1 Por su causalidad pueden ser: causales y no causales. Un sistema es causal si existe una relación de causalidad entre las salidas y las entradas del sistema, más explícitamente, entre la salida y los valores futuros de la entrada.
1.2 Según el número de entradas y salidas del sistema, se denominan:
1.2.1 De una entrada y una salida o SISO (single input, single output).
1.2.2 De una entrada y múltiples salidas o SIMO (single input, multiple output).
1.2.3 De múltiples entradas y una salida o MISO (multiple input, single output).
1.2.4 De múltiples entradas y múltiples salidas o MIMO (multiple input, multiple output).
1.3 Según la ecuación que define el sistema, se denomina:
1.3.1 Lineal, si la ecuación diferencial que lo define es lineal.
1.3.2 No lineal, si la ecuación diferencial que lo define es no lineal.
1.4 Las señales o variables de los sistema dinámicos son función del tiempo. Y de acuerdo con ello estos sistemas son:
1.4.1 De
...