ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Modalidad


Enviado por   •  23 de Febrero de 2015  •  676 Palabras (3 Páginas)  •  203 Visitas

Página 1 de 3

Segunda Ley de Kirchoff

Cuando un circuito posee más de una batería y varios resistores de carga ya no resulta tan claro como se establecen las corrientes por el mismo. En ese caso es de aplicación la segunda ley de Kirchhoff, que nos permite resolver el circuito con una gran claridad.

En un circuito cerrado, la suma de las tensiones de batería que se encuentran al recorrerlo siempre será iguales a la suma de las caídas de tensión existente sobre los resistores.

En la figura siguiente se puede observar un circuito con dos baterías que nos permitirá resolver un ejemplo de aplicación.

Fig.3. Circuito de aplicación de la segunda ley de Kirchoff

Observe que nuestro circuito posee dos baterías y dos resistores y nosotros deseamos saber cuál es la tensión de cada punto (o el potencial), con referencia al terminal negativo de B1 al que le colocamos un símbolo que representa a una conexión a nuestro planeta y al que llamamos tierra o masa. Ud. debe considerar al planeta tierra como un inmenso conductor de la electricidad.

Las tensiones de fuente, simplemente son las indicadas en el circuito, pero si pretendemos aplicar las caídas de potencial en los resistores, debemos determinar primero cual es la corriente que circula por aquel. Para determinar la corriente, primero debemos determinar cuál es la tensión de todas nuestras fuentes sumadas. Observe que las dos fuentes están conectadas de modos que sus terminales positivos están galvánicamente conectados entre sí por el resistor R1. Esto significa que la tensión total no es la suma de ambas fuentes sino la resta. Con referencia a tierra, la batería B1 eleva el potencial a 10V pero la batería B2 lo reduce en 1 V. Entonces la fuente que hace circular corriente es en total de 10 – 1 = 9V. Los electrones que circulan por ejemplo saliendo de B1 y pasando por R1, luego pierden potencial en B2 y atraviesan R2. Para calcular la corriente circulante podemos agrupar entonces a los dos resistores y a las dos fuentes tal como lo indica la figura siguiente.

Fig.4 Reagrupamiento del circuito

¿El circuito de la figura 4 es igual al circuito de la figura 3? No, este reagrupamiento solo se genera para calcular la corriente del circuito original. De acuerdo a la ley de Ohms

I = Et/R1+R2

Porque los electrones que salen de R1 deben pasar forzosamente por R2 y entonces es como si existiera un resistor total igual a la suma de los resistores

R1 + R2 = 1100 Ohms

Se dice que los resistores están conectados en serie cuando están conectados de este modo, de forma tal que ambos son atravesados por la misma corriente igual a

I = (10 – 1) / 1000 + 100 = 0,00817 o 8,17 mA

Ahora que sabemos cuál es la corriente que atraviesa el circuito podemos calcular la tensión sobre cada resistor. De la expresión de la ley de Ohm

I = V/R

Se puede despejar

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com