OPERACIONES MODULARES Y FACTORIZACION
Enviado por Helo Ortiz • 21 de Abril de 2017 • Tarea • 1.326 Palabras (6 Páginas) • 418 Visitas
Actividades[pic 1]
Operaciones modulares y factorización
Descripción
- Software:
- Fortaleza de Cifrados: http://www.criptored.upm.es/software/sw_m001e.htm
- Msieve153:
- Cálculo de inversos. Con Fortaleza de Cifrados encuentra los siguientes inversos multiplicativos:
- inv (17, 27); b) inv (18, 231); c) inv (210, 2431) d) inv (65537, 876931508).
- Factorización de un número n = p*q. Con Msieve153, factoriza estos 6 números compuestos de 200, 220, 240, 260, 280 y 300 bits:
825978003848998898312024716822625570154718240569348268118339
998953628399715298831992911290285452859887456062283192823882161683
1608732996831216508159277659952021701799674006235398744155288667343172997
1354543287778399153166979461113793173551214783618259618960560750495486103455301
1473581925762428348880838685007956586120125158907213652820145423054427928545607960997
1641198470486892624720223721055575805086956302357294324019878360042573969740363472454309613
Metodología
Una vez realizados los pasos anteriores debes encontrar el tiempo que tarda el programa y hacer una gráfica de «tiempo versus bits».
Entrega
Para realizar la entrega, sube a la plataforma únicamente el documento Pdf con los resultados.
CÁLCULOS CON FORTALEZA DE CIFRADOS
- Cálculo de inversos. Con Fortaleza de Cifrados encuentra los siguientes inversos multiplicativos:
- inv (17, 27);
- R. (8)
- inv (18, 231);
- R. (Los números no son primos relativos)
- inv (210, 2431) ;
- R. (683)
- inv (65537, 876931508);
- R. (661569001)
CÁLCULOS CON Msieve153
- Factorización de un número n = p*q. Con Msieve153, factoriza estos 6 números compuestos de 200, 220, 240, 260, 280 y 300 bits:
- 825978003848998898312024716822625570154718240569348268118339
- Msieve v. 1.53 (SVN 1005)
random seeds: 1cd69b50 d380bdee
factoring 825978003848998898312024716822625570154718240569348268118339 (60 digits)
searching for 15-digit factors
commencing quadratic sieve (60-digit input)
using multiplier of 11
using generic 32kb sieve core
sieve interval: 4 blocks of size 32768
processing polynomials in batches of 51
using a sieve bound of 59729 (3000 primes)
using large prime bound of 2986450 (21 bits)
using trial factoring cutoff of 22 bits
polynomial 'A' values have 8 factors
restarting with 1420 full and 15604 partial relations
3320 relations (1420 full + 1900 combined from 15604 partial), need 3096
begin with 17024 relations
reduce to 4969 relations in 2 passes
attempting to read 4969 relations
recovered 4969 relations
recovered 4529 polynomials
attempting to build 3320 cycles
found 3320 cycles in 1 passes
distribution of cycle lengths:
length 1 : 1420
length 2 : 1900
largest cycle: 2 relations
matrix is 3000 x 3320 (0.4 MB) with weight 89533 (26.97/col)
sparse part has weight 89533 (26.97/col)
filtering completed in 3 passes
matrix is 2833 x 2897 (0.4 MB) with weight 75587 (26.09/col)
sparse part has weight 75587 (26.09/col)
commencing Lanczos iteration
memory use: 0.4 MB
lanczos halted after 46 iterations (dim = 2831)
recovered 64 nontrivial dependencies
p30 factor: 362369769670658684194773794821
p31 factor: 2279378891345413668492217185959
elapsed time 00:00:01
- 998953628399715298831992911290285452859887456062283192823882161683
- Msieve v. 1.53 (SVN 1005)
random seeds: 73933634 81474cde
factoring 998953628399715298831992911290285452859887456062283192823882161683 (66 digits)
searching for 15-digit factors
commencing quadratic sieve (66-digit input)
using multiplier of 23
using generic 32kb sieve core
sieve interval: 12 blocks of size 32768
processing polynomials in batches of 17
using a sieve bound of 156601 (7107 primes)
using large prime bound of 10805469 (23 bits)
using trial factoring cutoff of 23 bits
polynomial 'A' values have 8 factors
7284 relations (3332 full + 3952 combined from 37551 partial), need 7203
begin with 40883 relations
reduce to 10710 relations in 2 passes
attempting to read 10710 relations
recovered 10710 relations
recovered 8450 polynomials
attempting to build 7284 cycles
found 7284 cycles in 1 passes
distribution of cycle lengths:
length 1 : 3332
length 2 : 3952
largest cycle: 2 relations
matrix is 7107 x 7284 (1.0 MB) with weight 203885 (27.99/col)
sparse part has weight 203885 (27.99/col)
filtering completed in 4 passes
matrix is 6491 x 6555 (0.9 MB) with weight 180721 (27.57/col)
sparse part has weight 180721 (27.57/col)
commencing Lanczos iteration
memory use: 0.9 MB
lanczos halted after 104 iterations (dim = 6487)
recovered 62 nontrivial dependencies
p33 factor: 359909105075785195573332655734953
p34 factor: 2775571982790955047631589322232411
elapsed time 00:00:18
- 1608732996831216508159277659952021701799674006235398744155288667343172997
- Msieve v. 1.53 (SVN 1005)
random seeds: 92208490 c24d8a69
factoring 1608732996831216508159277659952021701799674006235398744155288667343172997 (73 digits)
...