Servomotores
Enviado por 123mesina • 18 de Julio de 2012 • 2.562 Palabras (11 Páginas) • 1.458 Visitas
La principal ventaja de un servomotor, sobre los motores tradicionales de corriente continua o alterna, es la incorporación en los mismos, de un sistema de retroalimentación. Esta información puede ser utilizada para detectar un movimiento no deseado, o para garantizar la exactitud del movimiento ordenado. Un sistema de control de motor que responde a este diseño, es conocido como sistema de “Lazo Cerrado” (Closed Loop). La retroalimentación es generalmente provista por un codificador de algún tipo.
Además, los motores servo, tienen un ciclo de vida más prolongado, que los típicos motores síncronos o asíncronos, a la hora de soportar el constante cambio de velocidad. Los servomotores también pueden actuar como un freno, por derivación de la electricidad generada, a partir del propio motor.
Un Servomotor podría definirse genéricamente, como un motor utilizado para obtener una salida precisa y exacta en función del tiempo. Dicha salida esta expresada habitualmente en términos de posición, velocidad y/o torque.
Es así que los motores servo están ganando un lugar de privilegio en muy diversos ámbitos de la industria, en los cuales se valora sus extraordinarios desempeños, cuando se busca implementar soluciones de automación de gran confiabilidad. Se emplean en la potenciación de máquinas herramientas CNC, así como también en la automatización de plantas industriales y robótica en general.
Servomotores brushless de iman permanente
Si bien existen diferentes tecnologías de motores, que pueden ser utilizadas como servomotor, este artículo tratara sobre los servomotores brushless a imán permanente. Estos incorporan los más avanzados y eficientes adelantos en esta tecnología y son la base de apoyo de todo buen sistema de control CNC profesional.
La aplicación industrial de dichos motores está desarrollándose significativamente por múltiples razones, entre las que podemos mencionar: nuevos y más potentes componentes magnéticos para los motores como los imanes de tierras raras, reducción de costo de los motores y los equipos electrónicos necesarios para el control de los mismos, incorporación en dichos equipos electrónicos de nuevas funciones, para un control preciso y confiable del movimiento, que permiten utilizarlos eficientemente e incorporar nuevas áreas a su dominio de aplicación.
Esencialmente un motor brushless a imán permanente es una maquina sincrónica con la frecuencia de alimentación, capaz de desarrollar altos torques (hasta 3 o 4 veces su torque nominal), en forma transitoria, para oponerse a todo esfuerzo que trate de sacarla de sincronismo. La denominación brushless deviene del hecho de que no posee escobillas y es una forma de diferenciarlo de sus predecesores, los servomotores a imán permanente alimentados con corriente continua. Estos motores está alimentados con corriente alterna y en comparación con los motores asíncronos, a “jaula de ardillas” (que erogan el mismo torque / velocidad en su eje), la inercia de un servomotor brushless es sustancialmente menor. Ambas características: sobre-torques de importancia e inercias reducidas son características apreciadas y útiles para el control del movimiento, pues permiten rápidas aceleraciones y desaceleraciones, así como control preciso de posición en altas velocidades.
Constructivamente el servomotor brushless posee un estator parecido al de un motor de jaula con un núcleo laminado y un bobinado trifásico uniformemente distribuido. El rotor está constituido por un grupo de imanes permanentes fijados en el eje de rotación. La forma de los rotores a imanes varía de acuerdo al diseño y puede clasificarse en cilíndricos o de polos salientes. La fijación de los imanes al rotor ha sido uno de los puntos críticos en la construcción de estos motores debido a las altas fuerzas centrifugas a las que se encuentran sometidos durante los procesos de aceleración y frenado. Actualmente se combinan fijaciones mecánicas de diferentes tipos, con sus elementos pegados utilizando adhesivos especiales (atadura con fibra de vidrio, chavetado con diferentes materiales, etc.).
Haciendo circular corriente alterna en las fases del bobinado del estator producimos un campo magnético rotante en el entrehierro del motor. Si en cada instante, el campo magnético generado en el estator, intersecta con el ángulo correcto al campo magnético producido por los imanes del rotor, generamos torque para lograr el movimiento del motor y la carga acoplada a él.
La utilización de un dispositivo electrónico denominado servodrive, para alimentar al estator con la tensión y frecuencia correcta, permite en cada instante generar un campo magnético estatórico de magnitud y posición correctamente alineada, con el campo magnético de rotor. De esta forma obtenemos el torque necesario para mantener la velocidad y posición deseada del eje del motor. El proceso implica conocer en todo instante la posición del rotor, para lo cual se equipan los servomotores con dispositivos tales como resolvers, encoders u otros. Los mismos rotan solidariamente con el eje del servomotor e informan al servodrive la posición del rotor. Dichos dispositivos de realimentación de posición se diferencian en la robustez, resolución, capacidad de retener la información de posición ante cortes de alimentación y número de conexiones necesarias entre otras.
Por ejemplo en una servo-máquina de tracción directa, que rota normalmente a una velocidad nominal de algunas centenas de rpm, deberemos seleccionar dispositivos con un alto número de pulsos por revolución, a fin de tener control de torque, durante la partida y parada.
Actualmente los servodrives operan por técnicas de modulación de ancho de pulso o Pulse Width Modulation (PWM) con configuraciones de hardware (básicamente en la parte de potencia) parecidas a los inversores para el control de motores asincrónicos. De hecho existen en el mercado drives que permiten controlar ambos tipos de motores. Debe puntualizarse, que para la operación normal de un servomotor necesitamos un servodrive. El motor no puede ser operado directamente de la red de suministro.
El análisis del circuito equivalente simple de un servomotor brushless a iman, nos permite obtener las ecuaciones básicas de su comportamiento:
Torque en el eje:= Kt * Corriente, o sea que el torque en el eje es proporcional a la corriente del estator del servomotor. “Kt” es una constante para cada motor, expresada en unidades de torque dividido por la corriente (por ejemplo: NM / AMP). Conociendo el torque que deben erogar el motor, esta ecuación permite seleccionar el servodrive necesario en función
...