Actividad 1. Estrategia de creatividad: input aleatorio
Enviado por abner1997 • 6 de Julio de 2017 • Práctica o problema • 3.191 Palabras (13 Páginas) • 422 Visitas
- Clausurativa: el producto de dos números naturales es un número natural. 8 x 4 = 32 y 8, 4 y 32 son números naturales.
b) Conmutativa: el orden de los factores no altera el producto. a x b=b x a, como se observa en los siguientes ejemplos:
- 27 x 16 = 432
- 16 x 27 = 432
- 120 x 115 = 13,800
- 115 x 120 = 13,800
- 98 x 100 = 9,800
- 100 x 98 = 9,800
c) Asociativa: el producto de la multiplicación no varía por la forma en que se agrupen los factores.
a x (b x c)= (a x b) x c
35 x (21 x 43) = 35 x 903 = 31,605
(35 x 21) x 43 =735 x 43 = 31,605
d) Elemento neutro: el elemento neutro de la multiplicación es el número uno. Multiplicar cualquier número natural por 1, da como producto el mismo número natural (a x 1 = a):
23,456,498 x 1 = 23,456,498
1 x 1 = 1
1 x 657 = 657
1 x 5,463 = 5,463
e) Distributiva con respecto a la suma: para multiplicar un número natural por una suma indicada, es decir, que se encuentra dentro de un signo de agrupación, se multiplica dicho número por cada uno de los sumandos y finalmente se suman los productos.
Distributiva respecto a la suma: a x (b + c)= (a x b) + (a x c )
12 x ( 94 + 22)
= (12 x 94) + (12 x 22)
= 1128 + 264
= 1392
f) Distributiva con respecto a la resta: para multiplicar un número natural por una resta indicada, es decir, que se encuentra dentro de un signo de agrupación, se multiplica dicho número por el minuendo y después por el sustraendo, finalmente se restan los productos.
Distributiva con respecto a la resta: a x (b - c)= (a x b) - (a x c )
45 x (81 - 37)
= (45 x 81) – (45 x 37)
= 3,645 – 1,665
= 1,980
Analiza el ejemplo: 3 • 4 = 12;
Puedes ver que 3 y 4 son factores de 12 y también son sus divisores. Comprobemos:
La divisibilidad es una parte de la aritmética que se encarga de estudiar las condiciones que deben cumplir dos números naturales para que uno de ellos divida al otro de forma exacta. Esas condiciones se llaman criterios de divisibilidad y aquí abordaremos algunos que te permitirán obtener divisores de una manera más fácil, rápida y eficiente. Los criterios de divisibilidad te indicarán si un número natural se puede dividir de manera exacta entre 2, 3 o 5.
Divisibilidad entre 2
Un número natural es divisible entre dos cuando termina en cero o en cifra par. Recuerda que los números naturales terminados en 2, 4, 6 y 8 son pares, y que los números terminados en 1, 3, 5 y 7 son impares.
Ejemplos: 8,600 y 1,372. Al dividir 8,600 entre 2 da como resultado 4,300, en tanto que el residuo de esta división es cero. Al dividir 1,372 entre 2 da 686, mientras que el residuo de esta división es cero. Observamos que 8,600 y 1,372 son divisibles entre 2 porque se dividen exactamente entre 2, es decir, en ambos casos el residuo de la división es 0.
Divisibilidad entre 3
Un número natural es divisible entre 3 si al sumar sus cifras se obtiene un número divisible entre 3.
Ejemplos:
1) 3,127,614
Al sumar sus cifras (3+1+2+7+6+1+4) se obtiene 24. Como el resultado es divisible entre 3 podemos estar seguros que la cifra puede dividirse de manera exacta, en este caso el cociente resultante es 1,042,538, mientras que el residuo es cero.
2) 54,132
Al sumar sus cifras se obtiene 15, 15 entre 3 es 5, en tanto que el residuo es cero. Entonces 54,132 puede dividirse exactamente entre 3, ¿lo hacemos? En este caso el cociente resultante es 18,044, asimismo, el residuo es cero.
3) 321,000
Al sumar sus cifras se obtiene 6, 6 entre 3 es 2, en tanto que el residuo es cero. Entonces el 321,000 seguro se puede dividir exactamente entre 3, en este caso el cociente es 107,000, mientras que el residuo es cero.
Muy importante
¿Qué pasaría si el número fuera 321,001? Al sumar sus cifras se obtiene 7. Siete no es divisible entre 3, porque la división no es exacta, ya que el residuo no es cero, por lo tanto, 321,001 no se puede dividir exactamente entre 3. Es importante que entiendas que al decir que es divisible se está dando a entender que la división debe ser exacta, es decir, que el residuo debe ser cero. Esto no significa que existen divisiones que no se pueden hacer: podemos afirmar que las divisiones siempre se pueden realizar, aunque no siempre sean exactas.
Divisibilidad entre 5
Si la última cifra del número es 0 ó 5, entonces el número es divisible entre 5.
Ejemplos:
1) 655 es divisible entre 5, ya que termina en 5. El cociente es 131 y el residuo es cero.
2) 2,345 es divisible entre 5, ya que termina en 5. El cociente es 469 y el residuo es cero.
3) 311,210 es divisible entre 5, ya que termina en 0. El cociente es 62,242 y el residuo es cero.
Piensa por qué 311,214 no es divisible entre 5. Muy bien, el número no termina en 5 ni en 0. El cociente es 62,242 y el residuo es 4.
¿Es posible descomponer un número en factores?
Sí, esta es la principal aplicación de los criterios de divisibilidad, pues nos permiten descomponer los números naturales en factores.
El procedimiento tiene un nombre especial y se le conoce como factorización.
Entonces, factorizar consiste en descomponer un número en una multiplicación de sus factores. Podemos efectuar esta descomposición como se indica a continuación.
Primero se analiza si el número es divisible entre 2, 3 o 5, y así sucesivamente.
...