Caracterización de la asignatura.
Enviado por luja_23 • 22 de Agosto de 2013 • Informe • 3.038 Palabras (13 Páginas) • 296 Visitas
Caracterización de la asignatura. La característica más sobresaliente de esta asignatura es que en ella se estudian los conceptos sobre los que se construye todo el Cálculo: números reales, variable, función y límite. Utilizando estos tres conceptos se establece uno de los esenciales del Cálculo: la derivada, concepto que permite analizar razones de cambio entre dos variables, noción de trascendental importancia en las aplicaciones de la ingeniería. Esta asignatura contiene los conceptos básicos y esenciales para cualquier área de la ingeniería y contribuye a desarrollar en el ingeniero un pensamiento lógico, formal, heurístico y algorítmico. En el Cálculo diferencial el estudiante adquiere los conocimientos necesarios para afrontar con éxito cálculo integral, cálculo vectorial, ecuaciones diferenciales, asignaturas de física y ciencias de la ingeniería. Además, encuentra, también, los principios y las bases para el modelado matemático.
Intención didáctica. La unidad uno se inicia con un estudio sobre el conjunto de los números reales y sus propiedades básicas. Esto servirá de sustento para el estudio de las funciones de variable real, tema de la unidad dos. En la tercera unidad se introduce el concepto de límite de una sucesión, caso particular de una función de variable natural. Una vez comprendido el límite de una sucesión se abordan los conceptos de límite y continuidad de una función de variable real. En la unidad cuatro, a partir de los conceptos de incremento y razón de cambio, se desarrolla el concepto de derivada de una función continua de variable real. También se estudian las reglas de derivación más comunes. Finalmente, en la quinta unidad se utiliza la derivada en la solución de problemas de razón de cambio y optimización (máximos y mínimos).
1 Sistema de asignación y transferencia de créditos académicos
3.- COMPETENCIAS A DESARROLLAR
Competencias específicas Competencias genéricas
• Comprender las propiedades de los números reales para resolver desigualdades de primer y segundo grado con una incógnita y desigualdades con valor absoluto, representando las soluciones en la recta numérica real. • Comprender el concepto de función real e identificar tipos de funciones, así como aplicar sus propiedades y operaciones. • Comprender el concepto de límite de funciones y aplicarlo para determinar analíticamente la continuidad de una función en un punto o en un intervalo y mostrar gráficamente los diferentes tipos de discontinuidad. • Comprender el concepto de derivada para aplicarlo como la herramienta que estudia y analiza la variación de una variable con respecto a otra. • Aplicar el concepto de la derivada para la solución de problemas de optimización y de variación de funciones y el de diferencial en problemas que requieren de aproximaciones. • Procesar e interpretar datos. • Representar e interpretar conceptos en diferentes formas: numérica, geométrica, algebraica, trascendente y verbal. • Comunicarse en el lenguaje matemático en forma oral y escrita. • Modelar matemáticamente fenómenos y situaciones. • Pensamiento lógico, algorítmico, heurístico, analítico y sintético. • Potenciar las habilidades para el uso de tecnologías de información. • Resolución de problemas. • Analizar la factibilidad de las soluciones. • Optimizar soluciones. • Toma de decisiones. • Reconocimiento de conceptos o principios integradores. • Argumentar con contundencia y precisión.
4.- HISTORIA DEL PROGRAMA
Lugar y fecha de elaboración o revisión Participantes
Observaciones (cambios y justificación)
Cd. de Matamoros, Tamaulipas del 9 al 13 de Marzo de 2009. Representantes de los Institutos Tecnológicos de León, Matamoros, Mérida y Milpa Alta.
Definición de los temarios.
Cd. de Puebla, Puebla del 8 al 12 de junio del 2009
Representantes de los Institutos Tecnológicos de León, Matamoros, Mérida y Milpa Alta.
Consolidación de los temarios.
5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencia específica a desarrollar en el curso)
Plantear y resolver problemas que requieren del concepto de función de una variable para modelar y de la derivada para resolver.
6.- COMPETENCIAS PREVIAS
• Manejar operaciones algebraicas. • Resolver ecuaciones de primer y segundo grado con una incógnita. • Resolver ecuaciones simultaneas con dos incógnitas. • Manejar razones trigonométricas e identidades trigonométricas. • Identificar los lugares geométricos que representan rectas ó cónicas.
7.- TEMARIO
Unidad Temas Subtemas 1 Números reales. 1.1 La recta numérica. 1.2 Los números reales. 1.3 Propiedades de los números reales. 1.3.1 Tricotomía. 1.3.2 Transitividad. 1.3.3 Densidad. 1.3.4 Axioma del supremo. 1.4 Intervalos y su representación mediante desigualdades. 1.5 Resolución de desigualdades de primer grado con una incógnita y de desigualdades cuadráticas con una incógnita. 1.6 Valor absoluto y sus propiedades. 1.7 Resolución de desigualdades que incluyan valor absoluto.
TEMARIO (continuación).
Unidad Temas Subtemas 2 Funciones. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. 2.2 Función inyectiva, suprayectiva y biyectiva 2.3 Función real de variable real y su representación gráfica. 2.4 Funciones algebraicas: función polinomial, racional e irracional. 2.5 Funciones trascendentes: funciones trigonométricas y funciones exponenciales. 2.6 Función definida por más de una regla de correspondencia. función valor absoluto. 2.7 Operaciones con funciones: adición, multiplicación, composición. 2.8 Función inversa. Función logarítmica. Funciones trigonométricas inversas. 2.9 Funciones con dominio en los números naturales y recorrido en los números reales: las sucesiones infinitas. 2.10 Función implícita.
3 Límites y continuidad. 3.1 Límite de una sucesión. 3.2 Límite de una función de variable real. 3.3 Cálculo de límites. 3.4 Propiedades de los límites. 3.5 Límites laterales. 3.6 Límites infinitos y límites al infinito. 3.7 Asíntotas. 3.8 Funciones continuas y discontinuas en un punto y en un intervalo. 3.9 Tipos de discontinuidades.
4 Derivadas.
4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. 4.2 La interpretación geométrica de la derivada. 4.3 Concepto de diferencial. Interpretación geométrica de las diferenciales. 4.4 Propiedades de la derivada. 4.5 Regla de la cadena. 4.6 Fórmulas de derivación y fórmulas de diferenciación. 4.7 Derivadas de orden superior y regla L´Hôpital. 4.8 Derivada de funciones implícitas.
TEMARIO (continuación)
Unidad
...